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Goal:

Determine how much of the randomness in a “random” real can becancelled by adding

(or subtracting) a member of the Cantor set.

Further, determine the range of effective dimensions of points in a random translate of

the Cantor set.
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Let E ⊆ R
n. Thediameterof E, denoted|E|, is the maximum distance between any

two points inE. We will usecard for cardinality. AcoverG for a setE is a collection

of sets whose union containsE, andG is aδ-meshcover if the diameter of each

memberG is at mostδ. For a numberβ ≥ 0, theβ-dimensional Hausdorff measureof

E, writtenHβ(E), is given bylimδ→0 H
β
δ (E) where

Hβ
δ (E) = inf

{

∑

G∈G

|G|
β
: G is a countableδ-mesh cover ofE

}

. (1)

TheHausdorff dimensionof a setE, denoteddimH(E), is the unique numberα where

theα-dimensional Hausdorff measure ofE transitions from being negligible to being

infinitely large; ifβ < α, thenHβ(E) = ∞ and ifβ > α, thenHβ(E) = 0.
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Let Sδ(E) denote the smallest number of sets of diameter at mostδ which can cover

E. Theupper box-counting dimensionof E is defined as

dimB(E) = lim sup
δ→0

log Sδ(E)

− log δ
.

For allE we have

dimH(E) ≤ dimB(E).
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dimH(A× B) ≥ dimH A+ dimH B

dimH(A×B) ≤ dimH A+ dimB B
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Theeffective(or constructive) β-dimensional Hausdorff measureof a setE, cHβ(Ek),

is defined exactly in the same way as Hausdorff measure with the restriction that the

covers be uniformly c.e. open sets. This yields the corresponding notion of theeffective

(or constructive) Hausdorff dimensionof a setE, cdimH E.
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We define theconstructive dimensionof a pointx to be the effective Hausdorff

dimension of the singleton{x}.

Lutz showed that, for anyE,

cdimH E = sup{cdimH{x} : x ∈ E}.

Let

E≤α = {x : cdimH{x} ≤ α}.

From the above, we know that the effective Hausdorff dimension ofE≤α satisfies

cdimH E≤α = α; it turns out (Lutz) that alsodimH E≤α = α.
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TheKolmogorov complexityof a stringσ, denotedK(σ), is the length (here we will

measure length in ternary units) of the shortest program (under a fixed universal

machine) which outputsσ. For a real numberx, x � n denotes the firstn digits in a

ternary expansion ofx.
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All sequencess of lengthn haveK(s) ≤ n+O(logn); most of them have

K(s) ≥ n−O(1).
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From work of Levin (≥) and Mayordomo (≤) we have for any real numberx,

cdimH{x} = lim inf
n→∞

K(x � n)

n
. (2)
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We say a number isMartin-Löf randomif it “passes” all Martin-L̈of tests. A

Martin-Löf testis a uniformly computably enumerable (c.e.) sequence of open sets

{Um}m∈N with λ(Um) ≤ 2−m, whereλ denotes Lebesgue measure. A numberx

passessuch a test ifx 6∈ ∩mUm.

Martin-Löf random reals have high initial segment complexity; indeed every

Martin-Löf random realr satisfieslimn K(r � n)/n = 1.
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Cantor setC ⊆ [0, 1]:

dimH C = log3 2 ≈ .6309
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C + C = [0, 2]
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B1 = {0, 1}

B2 = {00, 02, 11}

B3 = {000, 002, 021, 110, 112}

B4 = {0000, 0002, 0011, 0200, 0202, 0211, 1100, 1102, 1111}

B5 = {00000, 00002, 00021, 00112, 00210, 01221, 02012,

02110, 02201, 10212, 11010, 11101, 11120, 11122}
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Lemma 1 (Lorentz). There exists a constantc such that for any integerk, if A ⊆ [0, k)

is a set of integers with|A| ≥ ` ≥ 2, then there exists a set of integersB ⊆ (−k, k)

such thatA+ B ⊇ [0, k) with |B| ≤ ck log `

`
.
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So we getE of constructive dimension1− dim C such thatE + C = [0, 2].
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Theorem 2. Let1− dimH C ≤ α ≤ 1 and letr ∈ [0, 1]. Then

dimH [(C + r) ∩ E≤α] ≥ α− 1 + dimH C.
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Assume1− dimH C < α < 1. SplitN intoA ⊆ N andĀ; then we can write

C = CA + CĀ. ChooseA of a suitable densityD = (1− α)/dimH C so thatdimH CA

comes out to be1− α. Then find a closed setE such thatcdimH E ≤ α and

CA +E = [0, 2]. LetF = 2−E, so thatF −CA = [0, 2]. LetS = C ∩ (F − r); it will

suffice to show thatdimH S ≥ α− 1 + dimH C.

Now for eachz ∈ C there exist unique pointsv ∈ CA andw ∈ CĀ such thatv +w = z;

let p be the projection map which takesz ∈ C to its unique counterpartw ∈ CĀ. For

eachy ∈ CĀ we haver + y ∈ [0, 2] ⊆ F − CA, so there existsx ∈ CA such that

r + y ∈ F − x, which givesx+ y ∈ S sinceCA + CĀ = C. Thusp mapsS ontoCĀ.

Sincep is Lipschitz we have

dimH S ≥ dimH CĀ ≥ α− 1 + dimH C

because Lipschitz maps do not increase dimension. The theorem follows.
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The setE is constructed as before, but the computation ofcdimH E has an additional

complication — we have not assumed thatα is computable. It turns out that

Kolmogorov complexity methods are useful here.

Specifically, let

A = {by/Dc : y ∈ N} .

Then initial segments ofA are easy to describe:

K(A[n]) ≤ 4 log3 n+O(1).

Now a straightforward computation shows that, ifε > 0, then for allx ∈ E and all

sufficiently largek we have

K(x � mk) ≤ mk[α+ ε+ o(1)],

which is enough to givecdimH E ≤ α.
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Theorem 3. Let1− dimH C ≤ α ≤ 1. For every Martin-L̈of random realr,

dimH [(C + r) ∩ E≤α] ≤ α− 1 + dimH C.
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Theorem 4. Let1− dimH C ≤ α ≤ 1 and letr ∈ [0, 1] be Martin-L̈of random. Then

dimH [(C + r) ∩ E=α] = α− 1 + dimH C.

Moreover,

Hα−1+dimH C [(C + r) ∩ E=α] > 0.
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Questions:

How much can the randomness ofr be reduced by adding a Cantor set point ifr was

not completely random to begin with?

What about sets other than the Cantor set?


