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Goal:

Determine how much of the randomness in a “random” real carabeelled by adding

(or subtracting) a member of the Cantor set.

Further, determine the range of effective dimensions afigsan a random translate of
the Cantor set.




Let £ C R™. Thediameterof E, denoted E|, is the maximum distance between any
two points inE. We will usecard for cardinality. Acoverg for a setE' is a collection
of sets whose union contaids andg is ad-meshcover if the diameter of each
membely is at most. For a numbep > 0, the 3-dimensional Hausdorff measuoé
E, written H” (E), is given bylim;_, H?(E) where

H?(E) — inf { Z |G\5 : G IS a countablé-mesh cover OE} : (1)
Geg

The Hausdorff dimensioof a setF, denotedlimy (F), is the unique number where
the a-dimensional Hausdorff measure Bftransitions from being negligible to being
infinitely large; if 3 < «, thenH?(E) = oo and if 3 > a, thenH?(E) = 0.




Let Ss(F) denote the smallest number of sets of diameter at madtich can cover
E. Theupper box-counting dimensiaf E is defined as

log Ss(F)

5§—0 —logd

dimp(F) = limsup

For all E we have







Theeffective(or constructivg 3-dimensional Hausdorff measuoé a setly, cH” (E},),
IS defined exactly in the same way as Hausdorff measure wathetriction that the

covers be uniformly c.e. open sets. This yields the cormedimg notion of theeffective
(or constructivé Hausdorff dimensionf a sett, cdimy F.




We define thesonstructive dimensioaf a pointx to be the effective Hausdorff
dimension of the singletofu}.




We define thesonstructive dimensioaf a pointx to be the effective Hausdorff
dimension of the singletofu}.

Lutz showed that, for any.,

cdimyg F = sup{cdimpg{x} : x € E}.




We define thesonstructive dimensioaf a pointx to be the effective Hausdorff
dimension of the singletofu}.

Lutz showed that, for any.,
cdimyg F = sup{cdimpg{x} : x € E}.

Let
E<o ={z:cdimp{x} < a}.

From the above, we know that the effective Hausdorff dimamsif £, satisfies
cdimy £<, = a; it turns out (Lutz) that alsdimy £<, = a.




The Kolmogorov complexitgf a stringo, denotedk (o), is the length (here we will
measure length in ternary units) of the shortest progrardgua fixed universal

machine) which outputs. For a real number, = | n denotes the first digits in a
ternary expansion of.




All sequences of lengthn haveK (s) < n + O(logn); most of them have

K(s) >n—0(1).




From work of Levin ) and Mayordomo <) we have for any real numbe;

K@ |n)

cdimg{z} = lim inf
n— oo n




We say a number islartin-Lof randomif it “passes” all Martin-Lof tests. A
Martin-Lof testis a uniformly computably enumerable (c.e.) sequence af gpés
{Up }men With A\(U,,,) < 27, where) denotes Lebesgue measure. A number

passesuch atestifc € N,,U,,.




We say a number islartin-Lof randomif it “passes” all Martin-Lof tests. A
Martin-Lof testis a uniformly computably enumerable (c.e.) sequence af gpés

{Up tmen With A(U,,,) < 27™, where\ denotes Lebesgue measure. A number
passesuch atestifc € N,,U,,.

Martin-Lof random reals have high initial segment complexity; irtleeery
Martin-Lof random reat satisfiedim,, K(r [ n)/n = 1.




Cantor set C [0, 1]:

dimy C = log; 2 =~ .6309
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By ={0,1}
By = {00, 02,11}
Bs = {000,002, 021,110, 112}

B4 = {0000, 0002, 0011, 0200, 0202, 0211, 1100, 1102, 1111}
Bs = {00000, 00002, 00021, 00112, 00210, 01221, 02012,
02110, 02201, 10212, 11010, 11101, 11120, 11122}




Lemma 1l (Lorentz) There exists a constantsuch that for any integer, if A C [0, k)

IS a set of integers withA| > ¢ > 2, then there exists a set of integdssC (—k, k)

such thatd + B D [0, k) with | B| < ck8%.




So we getF of constructive dimensioh — dim C such thatt + C = [0, 2].




Theorem 2. Letl — dimg C < a < 1andletr € [0, 1]. Then

dimg [(C+7r)N€<y] > a—1+dimy C.




Assumel — dimp C < a < 1. SplitN into A C N and A; then we can write

C =Ca + Cj. ChooseA of a suitable density) = (1 — «)/dimyg C so thatdimy C4
comes out to beé — «. Then find a closed séf such thatdimyg £ < o and
Ca+FE=10,2]. LetF =2—FE,sothatF' —C4 = [0,2]. LetS =CnN(F —r); it will
suffice to show thadlimy S > a — 1 + dimg C.

Now for eachz € C there exist unique points€ C4 andw € C; such that + w = z;

let p be the projection map which takese C to its unique counterpatt € C 5. For
eachy € C; we haver +y € [0,2] C F — C4, So there exists € C4 such that
r+y e F —x,which givesr +y € S sinceC4 + Cz = C. Thusp mapsS ontoC ;.
Sincep is Lipschitz we have

dlmHSZdlmHCA > a—1+dimygC

because Lipschitz maps do not increase dimension. Theeimeimilows.




The setE Is constructed as before, but the computationdifny; £ has an additional
complication — we have not assumed that computable. It turns out that
Kolmogorov complexity methods are useful here.

Specifically, let
A={ly/D]:yeNj.

Then initial segments ofl are easy to describe:

K(A[n]) < 4logsn + O(1).

Now a straightforward computation shows thag if 0, then for allx € E and all
sufficiently largek we have

K(z [ mg) < mgla+e+o(l)],

which is enough to givedimy F < «.




Theorem 3. Letl — dimy C < a < 1. For every Martin-16f random realr,

dimg [(C+r)N€<y] < a—1+dimygC.




Theorem 4. Letl — dimy C < a < 1 and letr € [0, 1] be Martin-Lof random. Then
dimy [(C+7r)N€—y] = a— 1+ dimygC.

Moreover,

o itdimi C e 4y M E_ ] > 0.




Questions:

How much can the randomnessrabe reduced by adding a Cantor set point wWas

not completely random to begin with?

What about sets other than the Cantor set?




