Point realizations of Boolean actions

Sławomir Solecki

University of Illinois at Urbana–Champaign

June 2012
Outline of Topics

1. Main problem
2. Some answers
3. Groups of isometries and unifying results
4. The borderline case: $C(M, \mathbb{T})$
All metric and topological spaces are assumed to be second countable.
Main problem
X a standard Borel space, for example, $X = [0,1]$
X a standard Borel space, for example, $X = [0, 1]$

μ a Borel probability measure on X
X a standard Borel space, for example, $X = [0, 1]$

μ a Borel probability measure on X

$\text{Aut}(\mu) =$ all measure preserving Boolean transformations of Borel/μ
Halmos–von Neumann:

given $f \in \text{Aut}(\mu)$, $f : \text{Borel}/\mu \rightarrow \text{Borel}/\mu$,
Halmos–von Neumann:
given \(f \in \text{Aut}(\mu) \), \(f : \text{Borel}/\mu \to \text{Borel}/\mu \),
there exists \(F : X \to X \) a **Borel bijection**
Halmos–von Neumann:

given $f \in \text{Aut}(\mu)$, $f : \text{Borel}/\mu \to \text{Borel}/\mu$, there exists $F : X \to X$ a **Borel bijection** such that

$$f(A/\mu) = F[A]/\mu$$

for each Borel set $A \subseteq X$.
Halmos–von Neumann:

given \(f \in \text{Aut}(\mu) \), \(f : \text{Borel}/\mu \to \text{Borel}/\mu \),

there exists \(F : X \to X \) a **Borel bijection** such that

\[
f(A/\mu) = F[A]/\mu
\]

for each Borel set \(A \subseteq X \).

\(f \) has a **point realization** \(F \).
Topology on $\text{Aut}(\mu) =$ the weakest topology making all the functions

$$\text{Aut}(\mu) \ni f \rightarrow \mu(f(a)\triangle b) \in \mathbb{R}$$

continuous, where $a, b \in \text{Borel}/\mu$.
Topology on \(\text{Aut}(\mu) \) = the weakest topology making all the functions

\[
\text{Aut}(\mu) \ni f \rightarrow \mu(f(a) \triangle b) \in \mathbb{R}
\]

continuous, where \(a, b \in \text{Borel}/\mu \).

This is a **Polish group** (separable, completely metrizable) topology on \(\text{Aut}(\mu) \).
G a Polish group
G a Polish group

Consider a **continuous homomorphism**

$$\phi : G \to \text{Aut}(\mu).$$
Consider a **continuous homomorphism**

\[\phi: G \to \text{Aut}(\mu). \]

Such a homomorphism \(\phi \) can be viewed as an action

\[G \times (\text{Borel}/\mu) \ni (g, a) \to \phi(g)(a) \in \text{Borel}/\mu. \]
G a Polish group

Consider a **continuous homomorphism**

$$\phi: G \to \text{Aut}(\mu).$$

Such a homomorphism ϕ can be viewed as an action

$$G \times (\text{Borel}/\mu) \ni (g, a) \to \phi(g)(a) \in \text{Borel}/\mu.$$

Actions of this sort are called **Boolean actions**.
Consider a \textbf{continuous homomorphism}

\[
\phi: G \to \text{Aut}(\mu).
\]

Such a homomorphism ϕ can be viewed as an action

\[
G \times (\text{Borel}/\mu) \ni (g, a) \to \phi(g)(a) \in \text{Borel}/\mu.
\]

Actions of this sort are called \textbf{Boolean actions}.

We will write $g(a)$ for $\phi(g)(a)$.

A point realization (or a spatial model) of a continuous homomorphism $G \to \text{Aut}(\mu)$ (or a Boolean action) is a Borel action $G \times X \to X$.
A **point realization** (or a **spatial model**) of a continuous homomorphism $G \rightarrow \text{Aut}(\mu)$ (or a Boolean action) is a Borel action $G \times X \rightarrow X$ such that

$$g(A/\mu) = g[A]/\mu$$

for all $g \in G$ and $A \in \text{Borel}$.
A **point realization** (or a **spatial model**) of a continuous homomorphism \(G \to \text{Aut}(\mu) \) (or a Boolean action) is a Borel action \(G \times X \to X \) such that

\[
g(A/\mu) = g[A]/\mu
\]

for all \(g \in G \) and \(A \in \text{Borel} \).

With notation \(\phi: G \to \text{Aut}(\mu) \) and \(\alpha: G \times X \to X \),
A **point realization** (or a **spatial model**) of a continuous homomorphism $G \rightarrow \text{Aut}(\mu)$ (or a Boolean action) is a Borel action $G \times X \rightarrow X$ such that

$$g(A/\mu) = g[A]/\mu$$

for all $g \in G$ and $A \in \text{Borel}$.

With notation $\phi: G \rightarrow \text{Aut}(\mu)$ and $\alpha: G \times X \rightarrow X$, the above equality says

$$\phi(g)(A/\mu) = \{\alpha(g, x): x \in A\}/\mu.$$
Main question:
Main question:

For what Polish groups G the following holds
Main question:

For what Polish groups G the following holds each continuous homomorphism $G \to \text{Aut}(\mu)$ (Boolean action) has a point realization?
On non point realizability, whirlyness:
On non point realizability, whirlyness:

G a Polish group
On non point realizability, whirlyness:

G a Polish group

A continuous homomorphism $G \to \text{Aut}(\mu)$ (a Boolean action) is called **whirly** if for each open $1 \in U \subseteq G$ and each $a \in \text{Borel}/\mu$ with $\mu(a) > 0$,

$$\mu(Ua) = 1.$$

Glasner–Weiss: A whirly Boolean action is not point realizable.

Glasner–Weiss: Ergodic Boolean actions of groups with "concentration of measure" are whirly, so they are not point realizable.
On non point realizability, whirlyness:

G a Polish group

A continuous homomorphism $G \to \text{Aut}(\mu)$ (a Boolean action) is called **whirly** if for each open $1 \in U \subseteq G$ and each $a \in \text{Borel}/\mu$ with $\mu(a) > 0$,

$$\mu(Ua) = 1.$$

Glasner–Weiss: A whirly Boolean action is not point realizable.
On non point realizability, whirlyness:

G a Polish group

A continuous homomorphism $G \to \text{Aut}(\mu)$ (a Boolean action) is called \textbf{whirly} if for each open $1 \in U \subseteq G$ and each $a \in \text{Borel}/\mu$ with $\mu(a) > 0$,

$$\mu(Ua) = 1.$$

\textbf{Glasner–Weiss}: A whirly Boolean action is not point realizable.

\textbf{Glasner–Weiss}: Ergodic Boolean actions of groups with “\textit{concentration of measure}” are whirly,
On non point realizability, whirlyness:

G a Polish group

A continuous homomorphism $G \to \text{Aut}(\mu)$ (a Boolean action) is called \textbf{whirly} if for each open $1 \in U \subseteq G$ and each $a \in \text{Borel}/\mu$ with $\mu(a) > 0$,

$$\mu(Ua) = 1.$$

\textbf{Glasner–Weiss}: A whirly Boolean action is not point realizable.

\textbf{Glasner–Weiss}: Ergodic Boolean actions of groups with "concentration of measure" are whirly, so they are not point realizable.
Some answers
The bad side
Some Polish groups have Boolean actions without point realizations.
Some Polish groups have Boolean actions without point realizations.

Vershik ’87
Some Polish groups have Boolean actions without point realizations.

Vershik '87

Becker '02:
\[G = \text{measure classes of measurable subsets of } [0, 1] \text{ with symmetric difference as group operation} \]
Some Polish groups have Boolean actions without point realizations.

Vershik ’87

Becker ’02:
\[G = \text{measure classes of measurable subsets of } [0, 1] \text{ with symmetric difference as group operation} \]

Glasner–Tsirelson–Weiss ’05:
\[G = \text{measure classes of measurable functions } [0, 1] \to \mathbb{T} \text{ with pointwise addition as group operation and with convergence in measure} \]
Becker’s example:
Becker’s example:

G acts on Borel/μ, where the underlying standard Borel space is

$$[0, 1] \times \{1, 2\}$$

and μ is the sum of Lebesgue measures on the two copies of $[0, 1]$.
Becker’s example:

G acts on Borel/μ, where the underlying standard Borel space is

$$[0, 1] \times \{1, 2\}$$

and μ is the sum of Lebesgue measures on the two copies of $[0, 1]$.

The action:
Becker’s example:

G acts on Borel/μ, where the underlying standard Borel space is

$$[0, 1] \times \{1, 2\}$$

and μ is the sum of Lebesgue measures on the two copies of $[0, 1]$.

The action:

$$a.(d_1, d_2) =$$

where $a \in G$ and $d_i \in \text{Borel}([0, 1] \times \{i\})/\mu$, $i = 1, 2$.
Becker’s example:

G acts on Borel/μ, where the underlying standard Borel space is

$$[0, 1] \times \{1, 2\}$$

and μ is the sum of Lebesgue measures on the two copies of $[0, 1]$.

The action:

$$a.(d_1, d_2) = ((d_1 \setminus a) \cup (d_2 \cap a), (d_2 \setminus a) \cup (d_1 \cap a)),$$

where $a \in G$ and $d_i \in \text{Borel}([0, 1] \times \{i\})/\mu$, $i = 1, 2$.
The good side
Recall that S_∞ is the group of all permutations of \mathbb{N} with composition and the topology of pointwise convergence.
Recall that S_∞ is the group of all permutations of \mathbb{N} with composition and the topology of pointwise convergence.

Mackey ’62:
If G is locally compact, then point realizations exist.
Recall that S_∞ is the group of all permutations of \mathbb{N} with composition and the topology of pointwise convergence.

Mackey ’62:
If G is locally compact, then point realizations exist.

Glasner–Weiss ’05:
If G is a closed subgroup of S_∞ (i.e., is non-archimedean), then point realizations exist.
Recall that S_∞ is the group of all permutations of \mathbb{N} with composition and the topology of pointwise convergence.

Mackey ’62:
If G is locally compact, then point realizations exist.

Glasner–Weiss ’05:
If G is a closed subgroup of S_∞ (i.e., is non-archimedean), then point realizations exist.

The proofs of these two results were very different.
Groups of isometries and unifying results
Groups of isometries
X a metric space
X a metric space
\(\text{Iso}(X) \) the group of all isometries of X with composition and pointwise convergence
X a metric space
\(\text{Iso}(X)\) the group of all isometries of X with composition and pointwise convergence
G a Polish group
X a metric space
$\text{Iso}(X)$ the group of all isometries of X with composition and pointwise convergence

G a Polish group
G is a **Polish group of isometries of** X if G is a subgroup of $\text{Iso}(X)$ as a topological group.
Uspensky, Gao–Kečhris: Polish groups = groups of isometries of Polish spaces = groups of the form $\text{Iso}(X)$ for a Polish metric space X
Uspensky, Gao–Kechris: Polish groups = groups of isometries of Polish spaces = groups of the form \(\text{Iso}(X) \) for a Polish metric space \(X \)

Malicki–S.: locally compact groups = groups of isometries of proper metric spaces = groups of the form \(\text{Iso}(X) \) for a proper metric space \(X \)
Uspensky, Gao–Kechris: Polish groups = groups of isometries of Polish spaces = groups of the form $\text{Iso}(X)$ for a Polish metric space X

Malicki–S.: locally compact groups = groups of isometries of proper metric spaces = groups of the form $\text{Iso}(X)$ for a proper metric space X

Melleray: compact groups = groups of isometries of compact metric spaces = groups of the form $\text{Iso}(X)$ for a compact metric space X
Uspensky, Gao–Kechris: Polish groups = groups of isometries of Polish spaces = groups of the form $\text{Iso}(X)$ for a Polish metric space X

Gao–Kechris: groups of isometries of locally compact metric spaces =
groups of the form $\text{Iso}(X)$ for a locally compact metric space X

Malicki–S.: locally compact groups = groups of isometries of proper metric spaces = groups of the form $\text{Iso}(X)$ for a proper metric space X

Melleray: compact groups = groups of isometries of compact metric spaces = groups of the form $\text{Iso}(X)$ for a compact metric space X
Uspensky, Gao–Kečrís: Polish groups $=$ groups of isometries of Polish spaces $=$ groups of the form $\text{Iso}(X)$ for a Polish metric space X

Gao–Kečrís: groups of isometries of locally compact metric spaces $=$ groups of the form $\text{Iso}(X)$ for a locally compact metric space X

Examples: locally compact groups, closed subgroups of S_∞, closed subgroups of countable products of locally compact groups

Malicki–S.: locally compact groups $=$ groups of isometries of proper metric spaces $=$ groups of the form $\text{Iso}(X)$ for a proper metric space X

Melleray: compact groups $=$ groups of isometries of compact metric spaces $=$ groups of the form $\text{Iso}(X)$ for a compact metric space X
The unifying result
Let G be a Polish group of isometries of a locally compact metric space. Then each continuous homomorphism $G \to \text{Aut}(\mu)$ has a point realization.
Theorem (Kwiatkowska–S.)

Let G be a Polish group of isometries of a locally compact metric space. Then each continuous homomorphism $G \to \text{Aut}(\mu)$ has a point realization.

The result unifies the theorems of Mackey and Glasner–Weiss.
Theorem (Kwiatkowska–S.)

Let G be a Polish group of isometries of a locally compact metric space. Then each continuous homomorphism $G \to \text{Aut}(\mu)$ has a point realization.

The result unifies the theorems of Mackey and Glasner–Weiss.

New cases: closed subgroups of countable products of locally compact groups.
We need a new characterization of groups of isometries of locally compact metric spaces.
We need a new characterization of groups of isometries of locally compact metric spaces.

Recall that for H a subgroup of G
We need a new characterization of groups of isometries of locally compact metric spaces.

Recall that for H a subgroup of G

$$N(H) = \{ g \in G : gHg^{-1} = H \}.$$
We need a new characterization of groups of isometries of locally compact metric spaces.

Recall that for H a subgroup of G

$$N(H) = \{ g \in G : gHg^{-1} = H \}.$$

Theorem (Kwiatkowska–S.)

Let G be a Polish group. Then G is a group of isometries of a locally compact metric space if and only if
We need a new characterization of groups of isometries of locally compact metric spaces.

Recall that for H a subgroup of G

$$\mathcal{N}(H) = \{ g \in G : gHg^{-1} = H \}.$$
We need a new characterization of groups of isometries of locally compact metric spaces.

Recall that for H a subgroup of G

$$N(H) = \{g \in G : gHg^{-1} = H\}.$$

Theorem (Kwiatkowska–S.)

Let G be a Polish group. Then G is a group of isometries of a locally compact metric space if and only if for each $U \ni 1$ open there exists $H \subseteq U$ a closed subgroup of G such that G/H is a locally compact space and
We need a new characterization of groups of isometries of locally compact metric spaces.

Recall that for H a subgroup of G

$$N(H) = \{g \in G : gHg^{-1} = H\}.$$

Theorem (Kwiatkowska–S.)

Let G be a Polish group. Then G is a group of isometries of a locally compact metric space if and only if for each $U \ni 1$ open there exists $H \subseteq U$ a closed subgroup of G such that

- G/H is a locally compact space and
- $N(H)$ is open.
Proofs
An outline of the proof of the second theorem
An outline of the proof of the second theorem

Gao–Kechris:

G a Polish group.
An outline of the proof of the second theorem

Gao–Kechris:

G a Polish group.

G is an isometry group of a locally compact metric space if and only if
An outline of the proof of the second theorem

Gao–Kechris:

G a Polish group.

G is an isometry group of a locally compact metric space if and only if G is a **closed subgroup** of a **countable product** of groups of the form $S^\infty \rtimes H^N$, where H is locally compact and S^∞ acts by homomorphisms on H^N by permuting coordinates.
An outline of the proof of the second theorem

Gao–Kechris:

G a Polish group.

G is an isometry group of a locally compact metric space if and only if G is a closed subgroup of a countable product of groups of the form

$$S_\infty \ltimes H^\mathbb{N},$$

where H is locally compact and S_∞ acts by homomorphisms on $H^\mathbb{N}$ by permuting coordinates.
Condition (✳) on \(G \):
Condition (\(\ast\)) on \(G\):

\[
\forall U \ni 1 \text{ open } \exists H \subseteq U \text{ a closed subgroup of } G \text{ such that}
\]
\[
G/H \text{ is locally compact;}
\]
\[
N(H) \text{ is open.}
\]
Condition (\ast) on G:

$\forall U \ni 1$ open $\exists H \subseteq U$ a closed subgroup of G such that

- G/H is locally compact;
- $N(H)$ is open.

Lemma

(i) $S_\infty \times H^\mathbb{N}$, where H is locally compact, has (\ast).
Condition (\(\ast\)) on \(G\):
\[
\forall U \ni 1 \text{ open } \exists H \subseteq U \text{ a closed subgroup of } G \text{ such that }
\]
\[
G/H \text{ is locally compact;}
\]
\[
N(H) \text{ is open.}
\]

Lemma

(i) \(S_\infty \ltimes H^\mathbb{N}\), where \(H\) is locally compact, has \((\ast)\).

(ii) Condition \(\ast\) is preserved under taking countable products.
Lemma

Condition (*) is preserved under taking closed subgroups.
Lemma

Condition (*) is preserved under taking closed subgroups.

Proof uses
Lemma

Condition (*) is preserved under taking closed subgroups.

Proof uses Yamabe’s theorem connecting locally compact groups with Lie groups (Hilbert’s 5-th problem)
Lemma

Condition (\(\ast\)) is preserved under taking closed subgroups.

Proof uses Yamabe’s theorem connecting locally compact groups with Lie groups (Hilbert’s 5-th problem) and well behaved dimension on Lie groups.
The borderline case: \(C(M, \mathbb{T}) \)
Let M be a compact metric space.
Let M be a compact metric space.
Let $C(M, \mathbb{T})$ be the group of all continuous functions from M to \mathbb{T} with pointwise multiplication and with the uniform convergence topology.
Let M be a compact metric space.
Let $C(M, \mathbb{T})$ be the group of all continuous functions from M to \mathbb{T} with pointwise multiplication and with the uniform convergence topology.

$C([0, 1], \mathbb{T})$ lies exactly between
\{ $f : [0, 1] \rightarrow \mathbb{T}$ measurable $\}$ (which has whirly actions)
and
groups with property (\ast) (which have point realizations).
Let M be a compact metric space. Let $C(M, \mathbb{T})$ be the group of all continuous functions from M to \mathbb{T} with pointwise multiplication and with the uniform convergence topology.

$C([0, 1], \mathbb{T})$ lies exactly between
\{ $f: [0, 1] \to \mathbb{T}$ measurable \} (which has whirly actions)
and
groups with property (*) (which have point realizations).

It does not have “concentration of measure.”
Theorem (Moore–S.)

Let M be a compact uncountable metric space. The group $C(M, \mathbb{T})$ has a whirly Boolean action.
Theorem (Moore–S.)

Let M be a compact uncountable metric space. The group $C(M, \mathbb{T})$ has a whirly Boolean action (so a Boolean action without a point realization).
An outline of proof in the case $M = 2^\mathbb{N}$
An outline of proof in the case $M = 2^\mathbb{N}$

Identify \mathbb{C} with \mathbb{R}^2.
The borderline case: $C(M, T)$

An outline of proof in the case $M = 2^\mathbb{N}$

Identify \mathbb{C} with \mathbb{R}^2.

Let γ be the standard Gaussian measure on \mathbb{C} with density

$$
\frac{1}{2\pi} e^{-\frac{1}{2}(x_0^2 + x_1^2)}
$$
The borderline case: $C(M, T)$

Note

γ is preserved under rotations of C by elements of T, π:

$C \times C \ni (z_1, z_2) \mapsto z_1 + z_2 \sqrt{2} \in C$ is measure preserving if $C \times C$ is taken with $\gamma \times \gamma$ and C with γ,

$\iota: T \ni z \mapsto (z, z) \in T \times T$ is a continuous embedding.
Note γ is **preserved** under rotations of \mathbb{C} by elements of \mathbb{T}.
Note γ is **preserved** under rotations of \mathbb{C} by elements of \mathbb{T},

$$
\pi : \mathbb{C} \times \mathbb{C} \ni (z_1, z_2) \rightarrow \frac{z_1 + z_2}{\sqrt{2}} \in \mathbb{C}
$$

is **measure preserving** if $\mathbb{C} \times \mathbb{C}$ is taken with $\gamma \times \gamma$ and \mathbb{C} with γ,
Note γ is **preserved** under rotations of \mathbb{C} by elements of \mathbb{T},

$$\pi: \mathbb{C} \times \mathbb{C} \ni (z_1, z_2) \rightarrow \frac{z_1 + z_2}{\sqrt{2}} \in \mathbb{C}$$

is **measure preserving** if $\mathbb{C} \times \mathbb{C}$ is taken with $\gamma \times \gamma$ and \mathbb{C} with γ, and

$$\iota: \mathbb{T} \ni z \rightarrow (z, z) \in \mathbb{T} \times \mathbb{T}$$

is a **continuous embedding**.
The borderline case: $C(M, T)$

$$(C, \gamma)$$

\uparrow

T
The borderline case: $C(M, \mathbb{T})$

\[
\begin{array}{c}
(\mathbb{C}, \gamma) \xleftarrow{\pi} (\mathbb{C}^2, \gamma^2) \\
\uparrow \quad \quad \quad \uparrow \\
\mathbb{T} \quad \xrightarrow{\iota} \quad \mathbb{T}^2
\end{array}
\]
The borderline case: \(C(M, T) \)

\[
(\mathbb{C}, \gamma) \leftarrow \pi \rightarrow (\mathbb{C}^2, \gamma^2) \leftarrow \pi^2 \rightarrow (\mathbb{C}^4, \gamma^4)
\]

\[\uparrow \quad \uparrow \quad \uparrow \quad \uparrow\]

\[T \quad \overset{i}{\longrightarrow} \quad \mathbb{T}^2 \quad \overset{i^2}{\longrightarrow} \quad \mathbb{T}^4\]
The borderline case: $C(M, \mathbb{T})$

$$(\mathbb{C}, \gamma) \xleftarrow{\pi} (\mathbb{C}^2, \gamma^2) \xleftarrow{\pi^2} (\mathbb{C}^4, \gamma^4) \xleftarrow{\pi^3} (\mathbb{C}^8, \gamma^8)$$

$\mathbb{T} \xrightarrow{i} \mathbb{T}^2 \xrightarrow{i^2} \mathbb{T}^4 \xrightarrow{i^3} \mathbb{T}^8$$
The borderline case: $C(M, T)$

$$(C, \gamma) \leftarrow \pi \quad (C^2, \gamma^2) \leftarrow \pi^2 \quad \cdots \lim (C^{2^n}, \gamma^{2^n})$$

$$\uparrow \quad \uparrow \quad \uparrow$$

$$(\mathbb{T}, \iota) \rightarrow \mathbb{T}^2 \rightarrow \iota^2 \rightarrow \cdots \lim \mathbb{T}^{2^n}$$
The borderline case: $C(M, \mathbb{T})$

π π^2 \lim \subseteq

φ ψ φ^2 $\lim \varphi^{2^n} \subseteq \varphi^{\infty}$

\mathbb{T} \mathbb{T}^2 $\mathbb{T}^{2^n} \subseteq \mathbb{C}(2^\mathbb{N}, \mathbb{T})$
The borderline case: $C(M, T)$

\[(C, \gamma) \leftarrow \pi \leftarrow (C^2, \gamma^2) \leftarrow \pi^2 \leftarrow \cdots \lim(C^{2n}, \gamma^{2n}) \rightarrow (C^\infty, \gamma^\infty)\]

\[
\begin{align*}
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow & \\
T & \rightarrow \quad T^2 & \rightarrow \quad T^{2^2} & \rightarrow \quad \lim T^{2^n} & \subseteq \quad C(2^N, T)
\end{align*}
\]
We get a Boolean action of $C(2^N, \mathbb{T})$ on the probability measure space $(C^\infty, \gamma^\infty)$.
The proof of the following result is important for the proof of non-point realizability:
The proof of the following result is important for the proof of non-point realizability:

If \(a \in \mathbb{R} \) and \(B \subseteq \mathbb{R}^N \) is a Borel set of positive \(\gamma^N \)-measure, then

\[
\gamma^N(\sqrt{1 + a^2 B + ay}) > 0, \quad \text{for } \gamma^N\text{-a.e. } y \in \mathbb{R}^N.
\]
Question.
Question. Characterize Polish groups with the point realization property?