Dynamics of the homeomorphism group of the Lelek fan

Aleksandra Kwiatkowska

University of California, Los Angeles
joint work with Dana Bartošová

June 2015
PART 1

The Lelek fan
Lelek fan

- C – the Cantor set
Lelek fan

- C – the Cantor set
- continuum - compact and connected metric space
Lelek fan

- C – the Cantor set
- continuum - compact and connected metric space

- **Cantor fan** F is the cone over the Cantor set:

 $C \times [0, 1]/C \times \{0\}$
Lelek fan

- C – the Cantor set
- continuum - compact and connected metric space

Cantor fan F is the cone over the Cantor set:

$$C \times [0, 1]/C \times \{0\}$$

- subfan of the Cantor fan - subcontinuum of the Cantor fan that contains the top point, and is not homeomorphic to $[0,1]$ or to a point
Lelek fan

- C – the Cantor set
- continuum - compact and connected metric space

- **Cantor fan** F is the cone over the Cantor set:
 $C \times [0, 1]/C \times \{0\}$

- subfan of the Cantor fan - subcontinuum of the Cantor fan that contains the top point, and is not homeomorphic to $[0,1]$ or to a point

- **Lelek fan** L is a subfan of the Cantor fan with a dense set of endpoints in L
Lelek fan

Universal minimal flow of $H(L)$
More applications to the dynamics of $H(L)$
Let \mathcal{F} be the family of all finite reflexive fans (graphs (A, R^A) as below)
Let \mathcal{F} be the family of all finite reflexive fans (graphs (A, R^A) as below)
The family \mathcal{F} has the following two properties:

1. (F1) (joint projection property: JPP) for any $A, B \in \mathcal{F}$ there is $C \in \mathcal{F}$ and epimorphisms from C onto A and from C onto B;

2. (F2) (amalgamation property: AP) for $A, B_1, B_2 \in \mathcal{F}$ and any epimorphisms $\phi_1 : B_1 \to A$ and $\phi_2 : B_2 \to A$, there exist C, $\phi_3 : C \to B_1$ and $\phi_4 : C \to B_2$ such that $\phi_1 \circ \phi_3 = \phi_2 \circ \phi_4$.
Construction of the Lelek fan, part 3

1. \mathcal{F} is an example of a projective Fraïssé family
Construction of the Lelek fan, part 3

1. \mathcal{F} is an example of a projective Fraïssé family
2. By a theorem of Irwin and Solecki there is a unique limit \mathbb{L} of \mathcal{F}, the projective Fraïssé limit.
Construction of the Lelek fan, part 3

1. \mathcal{F} is an example of a projective Fraïssé family
2. By a theorem of Irwin and Solecki there is a unique limit \mathbb{L} of \mathcal{F}, the projective Fraïssé limit.
3. \mathbb{L} is the Cantor set equipped with a closed binary relation $R^\mathbb{L}$, and it satisfies:
Construction of the Lelek fan, part 3

1. \mathcal{F} is an example of a projective Fraïssé family

2. By a theorem of Irwin and Solecki there is a unique limit \mathbb{L} of \mathcal{F}, the projective Fraïssé limit.

3. \mathbb{L} is the Cantor set equipped with a closed binary relation $R^\mathbb{L}$, and it satisfies:

4. (L1) (projective universality) for any $A \in \mathcal{F}$ there is an epimorphism from \mathbb{L} onto A

5. (L2) (projective ultrahomogeneity) for any $A \in \mathcal{F}$ and any epimorphisms $\phi_1 : \mathbb{L} \to A$ and $\phi_2 : \mathbb{L} \to A$ there exists an isomorphism $h : \mathbb{L} \to \mathbb{L}$ such that $\phi_2 = \phi_1 \circ h$
Construction of the Lelek fan, part 4

Proposition

The relation R^L_S, where $R^L_S(x, y)$ iff $R^L(x, y)$ or $R^L(y, x)$, is an equivalence relation such that each equivalence class has at most two elements.
Proposition

The relation \(R^L_S \), where \(R^L_S(x, y) \) iff \(R^L(x, y) \) or \(R^L(y, x) \), is an equivalence relation such that each equivalence class has at most two elements.

Theorem

\(L/R^L_S \) is the Lelek fan.
Properties of the Lelek fan

$H(L)$ – the homeomorphism group of the Lelek fan

1. $H(L)$ is totally disconnected
2. $H(L)$ is generated by every neighbourhood of the identity
3. $H(L)$ has a dense conjugacy class
4. $H(L)$ is simple
PART 2

The universal minimal flow of $H(L)$
Universal minimal flows

G – topological group

Definition

A *G-flow* is a continuous action of G on a compact Hausdorff space.
G – topological group

Definition

A G-flow is a continuous action of G on a compact Hausdorff space.

Definition

A G-flow is called minimal if it has no non-trivial closed invariant subsets.
Universal minimal flows

\(G \) – topological group

Definition

A **G-flow** is a continuous action of \(G \) on a compact Hausdorff space.

Definition

A **G-flow** is called **minimal** if it has no non-trivial closed invariant subsets.

Definition

The **universal minimal flow** of \(G \) is the unique minimal \(G \)-flow that has all other minimal \(G \)-flows as its homomorphic images.
Extreme amenability

Definition

We say that G is **extremely amenable** if every G-flow has a fixed point.
Extreme amenability

Definition

We say that G is **extremely amenable** if every G-flow has a fixed point.

- A topological group G is **amenable** if every continuous action of G on a compact Hausdorff space has an invariant Borel probability measure.
Extreme amenability

Definition

We say that G is **extremely amenable** if every G-flow has a fixed point.

- A topological group G is **amenable** if every continuous action of G on a compact Hausdorff space has an invariant Borel probability measure.
- Therefore every extremely amenable group is amenable.
Extreme amenability

Definition

We say that G is **extremely amenable** if every G-flow has a fixed point.

- A topological group G is **amenable** if every continuous action of G on a compact Hausdorff space has an invariant Borel probability measure.
- Therefore every extremely amenable group is amenable.
- If G is non-trivial and locally compact then G is **not** extremely amenable. (Veech)
Examples of extremely amenable groups

- the isometry group of the Urysohn metric space (Pestov)
- the group of all linear isometries of the Gurarij Banach space (Bartosova, Lopez-Abad, Mbombo)
- the group of all measure preserving transformations of $([0, 1], \lambda)$ (Giordano-Pestov)
Examples of extremely amenable groups

- the isometry group of the Urysohn metric space (Pestov)
- the group of all linear isometries of the Gurarij Banach space (Bartosova, Lopez-Abad, Mbombo)
- the group of all measure preserving transformations of $([0, 1], \lambda)$ (Giordano-Pestov)
- many automorphism groups of countable structures (ex. of rationals, of the random ordered graph,...) (Kechris-Pestov-Todorcevic)
Let \mathcal{G} be a projective Fraïssé family with the projective Fraïssé limit \mathbb{G}.
Let \mathcal{G} be a projective Fraïssé family with the projective Fraïssé limit \mathcal{G}. Let $\mathcal{G} = \text{Aut}(\mathcal{G})$ be the automorphism group of \mathcal{G}.

Let \mathcal{G} be a projective Fraïssé family with the projective Fraïssé limit \mathcal{G}.

Let $G = \text{Aut}(\mathcal{G})$ be the automorphism group of \mathcal{G}.

Theorem

The following are equivalent

1. *The group G is extremely amenable.*
2. *The family \mathcal{G} is a projective Ramsey class.*
Main question

Question

What is the universal minimal flow of $H(L)$?
Chains

- K – compact Hausdorff topological space
Chains

- K – compact Hausdorff topological space
- A **chain** C on K is a family of closed subsets of K such that for every $C_1, C_2 \in C$, either $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.
Chains

- K – compact Hausdorff topological space
- A chain \mathcal{C} on K is a family of closed subsets of K such that for every $C_1, C_2 \in \mathcal{C}$, either $C_1 \subseteq C_2$ or $C_2 \subseteq C_1$.
- A chain \mathcal{C} is maximal if for every closed set $D \subseteq K$, if $\{D\} \cup \mathcal{C}$ is a chain then $D \in \mathcal{C}$.

Aleksandra Kwiatkowska
Dynamics of the homeomorphism group of the Lelek fan
If K is a fan (ex: a finite fan from \mathcal{F} or the Lelek fan L), say that a chain is \textit{compatible} if it is compatible with respect to the linear order on each segment/branch of the fan.
Main theorem

Let

\[H = \{ h \in H(L) : h(C^L) = C^L \}, \]

where \(C^L \) is a “generic” chain on \(L \).
Main theorem

Let

\[H = \{ h \in H(L) : h(C^L) = C^L \}, \]

where \(C^L \) is a “generic” chain on \(L \).

Theorem

The universal minimal flow of \(H(L) \) is equal to \(H(L) \bowtie \widehat{H(L)}/H \), the completion of \(H(L)/H \).
The generic chain on L

- Let \mathcal{F}_c be the family of all finite reflexive fans, each equipped with a maximal compatible chain.
The generic chain on L

- Let \mathcal{F}_c be the family of all finite reflexive fans, each equipped with a maximal compatible chain.
- We can take a limit of \mathcal{F}_c.
- This limit will be $\mathbb{L}_c = (\mathbb{L}, \mathcal{C}^\mathbb{L})$, where $\mathcal{C}^\mathbb{L}$ – a maximal compatible chain on \mathbb{L}.
The generic chain on L

- Let \mathcal{F}_c be the family of all finite reflexive fans, each equipped with a maximal compatible chain.
- We can take a limit of \mathcal{F}_c.
- This limit will be $L_c = (\mathbb{I}, C^\mathbb{I})$, where $C^\mathbb{I}$ – a maximal compatible chain on \mathbb{I}.
- Define the generic chain C^L on L to be $\pi(C^\mathbb{I})$, where $\pi: \mathbb{I} \rightarrow L$ denotes the projection.
Main steps in the proof of the Main Theorem

Finding the expansion \mathcal{F}_c of \mathcal{F} and showing
Main steps in the proof of the Main Theorem

Finding the expansion \mathcal{F}_c of \mathcal{F} and showing

Theorem

1. \mathcal{F}_c is a projective Ramsey class (needed for the universality).
2. \mathcal{F}_c has the expansion property (needed for the minimality).
3. \mathcal{F}_c is a precompact expansion
Main steps in the proof of the Main Theorem

Finding the expansion \mathcal{F}_c of \mathcal{F} and showing

Theorem

1. \mathcal{F}_c is a projective Ramsey class (needed for the universality).
2. \mathcal{F}_c has the expansion property (needed for the minimality).
3. \mathcal{F}_c is a precompact expansion

Theorem

The group $\text{Aut}(\mathcal{F}_c)$ is extremely amenable.
And then:

- We prove a dual version of Kechris-Pestov-Todorcevic correspondence. (for universal minimal flows)
And then:

- We prove a dual version of Kechris-Pestov-Todorcevic correspondence. (for universal minimal flows)
- Using the dual version of Kechris-Pestov-Todorcevic correspondence, we deduce that the universal minimal flow of $\text{Aut}(\mathbb{L})$, the automorphism group of \mathbb{L}, is

$$\text{Aut}(\mathbb{L}) \equiv \text{Aut}(\mathbb{L})/H_0,$$

where $H_0 = \{ f \in \text{Aut}(\mathbb{L}) : f(C^\mathbb{L}) = C^\mathbb{L} \}$.

The universal minimal flow
And then:

- We prove a dual version of Kechris-Pestov-Todorcevic correspondence. (for universal minimal flows)
- Using the dual version of Kechris-Pestov-Todorcevic correspondence, we deduce that the universal minimal flow of $\text{Aut} (\mathbb{L})$, the automorphism group of \mathbb{L}, is
 \[\text{Aut} (\mathbb{L}) \bowtie \widehat{\text{Aut}} (\mathbb{L}) / H_0, \]
 where $H_0 = \{ f \in \text{Aut} (\mathbb{L}) : f (C^\mathbb{L}) = C^\mathbb{L} \}$.
- Deduce that the universal minimal flow of $H (L)$ is
 \[H (L) \bowtie \widehat{H} (L) / H, \]
 where $H = \{ h \in H (L) : h (C^L) = C^L \}$.
PART 3

More applications to the dynamics of $H(L)$
Fans with ordered branches

\[\mathcal{F}_{\leq} \] – the family of all finite reflexive fans with an order on the set of branches.
Fans with ordered branches

- \mathcal{F}_\leq – the family of all finite reflexive fans with an order on the set of branches.
- Precisely: $A_\leq = (A, R^A, \leq^A) \in \mathcal{F}_\leq$ iff $(A, R^A) \in \mathcal{F}$ and for some ordering $a_1 < a_2 < \ldots < a_n$ of branches in A we have $x \leq^A y$ if and only if there are $i \leq j$ such that $x \in a_i$ and $y \in a_j$.

This is a projective Fra"{e}s family.
Fans with ordered branches

- \mathcal{F}_\leq – the family of all finite reflexive fans with an order on the set of branches.
- Precisely: $A_\leq = (A, R^A, \leq^A) \in \mathcal{F}_\leq$ iff $(A, R^A) \in \mathcal{F}$ and for some ordering $a_1 < a_2 < \ldots < a_n$ of branches in A we have $x \leq^A y$ if and only if there are $i \leq j$ such that $x \in a_i$ and $y \in a_j$.
- This is a projective Fraïssé family.
Fans with ordered branches

- \(\mathcal{F}_\leq\) – the family of all finite reflexive fans with an order on the set of branches.

- Precisely: \(A_\leq = (A, R^A, \leq^A) \in \mathcal{F}_\leq\) iff \((A, R^A) \in \mathcal{F}\) and for some ordering \(a_1 < a_2 < \ldots < a_n\) of branches in \(A\) we have \(x \leq^A y\) if and only if there are \(i \leq j\) such that \(x \in a_i\) and \(y \in a_j\).

- This is a projective Fraïssé family.

- \(\mathbb{L}_\leq\) – the projective Fraïssé limit of \(\mathcal{F}_\leq\)
The class \mathcal{F}_\leq is a projective Ramsey class.
Theorem – \mathcal{F}_{\leq}

The class \mathcal{F}_{\leq} is a projective Ramsey class.

To show the theorem above we need:

- The generalization of the finite Gowers’ Ramsey Theorem.
The class \mathcal{F}_{\leq} is a projective Ramsey class.

To show the theorem above we need:

- The generalization of the finite Gowers’ Ramsey Theorem.
- The theorem about size-insensitivity.
\[\text{FIN}_k(n) = \{ p : \{1, \ldots, n\} \to \{0, 1, \ldots, k\} : \exists l \ (p(l) = k) \} \]
$\text{FIN}_k(n) = \left\{ p : \{1, \ldots, n\} \to \{0, 1, \ldots, k\} : \exists l \ (p(l) = k) \right\}$

$\text{supp}(p) = \{ l \in \{1, \ldots, n\} : p(l) \neq 0 \}$
Operations on $\text{FIN}_k(n)$

OPERATIONS

$+ \quad p + q$ is defined to be $p + q$, whenever $\max(\text{supp}(p)) < \min(\text{supp}(q))$
Operations on $\text{FIN}_k(n)$

OPERATIONS

+ $p + q$ is defined to be $p + q$, whenever $\max(\text{supp}(p)) < \min(\text{supp}(q))$

$T_i^{(k)}$ For every $i = 1, 2, \ldots, k$ we have a function

$T_i^{(k)} : \text{FIN}_k(n) \rightarrow \text{FIN}_{k-1}(n)$

\[
T_i^{(k)}(p)(l) = \begin{cases}
p(l) & \text{if } p(l) < i \\
p(l) - 1 & \text{if } p(l) \geq i.
\end{cases}
\]
Operations on $\text{FIN}_k(n)$

Operations

- $p + q$ is defined to be $p + q$, whenever $\max(\text{supp}(p)) < \min(\text{supp}(q))$

$T^{(k)}_i$ For every $i = 1, 2, \ldots, k$ we have a function $T^{(k)}_i : \text{FIN}_k(n) \to \text{FIN}_{k-1}(n)$

$$T^{(k)}_i(p)(l) = \begin{cases} p(l) & \text{if } p(l) < i \\ p(l) - 1 & \text{if } p(l) \geq i. \end{cases}$$

Let also $T^{(k)}_0 = \text{id} \upharpoonright_{\text{FIN}_k}$.

Lelek fan
Universal minimal flow of $H(L)$
More applications to the dynamics of $H(L)$
Generalization of the finite version of the Gowers’ Ramsey Theorem, part 1

A sequence $B = (b_s)_{s=1}^m$ of elements of $\text{FIN}_k(n)$ is called a block sequence if for every s,

$$\max(\text{supp}(b_s)) < \min(\text{supp}(b_{s+1})).$$
A sequence $B = (b_s)_{s=1}^m$ of elements of $\text{FIN}_k(n)$ is called a block sequence if for every s,

$$\max(\text{supp}(b_s)) < \min(\text{supp}(b_{s+1})).$$

Let $\langle B \rangle_k$ denote the subset of $\text{FIN}_k(n)$ of

$$\sum_{s=1}^m T_{\vec{i_s}}(b_s),$$

such that $\vec{i_s} \in \prod_{j=1}^k \{0, 1, \ldots, j\}$ and there is an s with $T_{\vec{i_s}}(b_s) = b_s$.
Generalization of the finite version of the Gowers’ Ramsey Theorem, part 2

Theorem

Let k, m, r be natural numbers. Then there exists a natural number n such that for every colouring $c : \text{FIN}_k(n) \to \{1, 2, \ldots, r\}$ there exists a block sequence B of length m in $\text{FIN}_k(n)$ such that $\langle B \rangle_k$ is c-monochromatic.
Generalization of the finite version of the Gowers’ Ramsey Theorem, part 2

Theorem

Let k, m, r be natural numbers. Then there exists a natural number n such that for every colouring $c : \text{FIN}_k(n) \to \{1, 2, \ldots, r\}$ there exists a block sequence B of length m in $\text{FIN}_k(n)$ such that $\langle B \rangle_k$ is c-monochromatic.

We proved and need a more general Ramsey theorem.
Let $\text{Aut}(\mathbb{L})$ and $\text{Aut}(\mathbb{L}_\leq)$ be the automorphism groups of \mathbb{L} and \mathbb{L}_\leq.
Let $\text{Aut}(\mathbb{L})$ and $\text{Aut}(\mathbb{L}_{\leq})$ be the automorphism groups of \mathbb{L} and \mathbb{L}_{\leq}.

Theorem

The group $\text{Aut}(\mathbb{L}_{\leq})$ is extremely amenable.
Theorem – $H(L)$

- $H(L)$ – the homeomorphism group of L
Theorem – $H(L)$

- $H(L)$ – the homeomorphism group of L
- Let $\leq_L = \pi(\leq_{\mathbb{L}})$, where $\pi: \mathbb{L} \to L$ is the quotient map.
Theorem – $H(L)$

- $H(L)$ – the homeomorphism group of L
- Let $\leq_L = \pi(\leq_I)$, where $\pi : I \to L$ is the quotient map.

\[
H(L_{\leq}) = \\
\{ h \in H(L) : \text{for every } x, y \in L \ (x \leq_L y \implies h(x) \leq_L h(y)) \}
\]
Theorem – $H(L)$

- $H(L)$ – the homeomorphism group of L
- Let $\leq_L = \pi(\leq_I)$, where $\pi: I \to L$ is the quotient map.

$$H(L_{\leq}) = \{ h \in H(L) : \text{for every } x, y \in L (x \leq_L y \implies h(x) \leq_L h(y)) \}$$

Theorem

The group $H(L_{\leq})$ is extremely amenable.