Introduction

The \(\text{FIN}_k \) theorem was formulated and proved by Gowers [Gow92] to obtain a stabilization theorem for \(c_0 \), the space of sequences converging to zero with the supremum norm. The theorem is a generalization of Hindman’s theorem.
Let $PS_{c_0} = \{(a_n) \in S_{c_0} : a_n > 0 \text{ for all } n \in \mathbb{N}\}$.
Let $PS_{c_0} = \{(a_n) \in S_{c_0} : a_n > 0 \text{ for all } n \in \mathbb{N}\}$.

The structure FIN_k is a discretization of the positive unit sphere of c_0.
Let $PS_{c_0} = \{(a_n) \in S_{c_0} : a_n > 0 \text{ for all } n \in \mathbb{N}\}$.

The structure FIN_k is a discretization of the positive unit sphere of c_0.

The structure FIN_k^\pm is a discretization of the unit sphere of c_0.

The structure FIN_k

For a fixed $k \in \mathbb{N}$, FIN_k is the set of all finitely supported functions $f : \mathbb{N} \to \{0, 1, \ldots, k\}$ that attain the maximum value k.
The structure FIN_k

For a fixed $k \in \mathbb{N}$, FIN_k is the set of all finitely supported functions $f : \mathbb{N} \to \{0, 1, \ldots, k\}$ that attain the maximum value k. Given $f, g \in \text{FIN}_k$ we say that $f < g$ if the support of g occurs after the support of f. A sequence (f_i) is a block sequence if $f_i < f_j$ for $i < j$. We consider two operations in FIN_k:

1. **Sum**: $(f + g)(x) = f(x) + g(x)$ for $f < g$.
2. **Tetris**: $T(f)(x) = \max\{0, f(x) - 1\}$.

The space generated by a block sequence $(f_i)_{i \in I}$ is $\langle f_i \rangle_{i \in \mathbb{N}} = \{T_l^1(f_{i_1}) + \ldots + T_l^n(f_{i_n}) : i_1 < \ldots < i_n, \min\{l_1, \ldots, l_n\} = 0\}$.

Diana Ojeda-Aristizabal
Finite forms of Gowers' FIN_k Theorem
For a fixed $k \in \mathbb{N}$, FIN_k is the set of all finitely supported functions $f : \mathbb{N} \rightarrow \{0, 1, \ldots, k\}$ that attain the maximum value k. Given $f, g \in \text{FIN}_k$ we say that $f < g$ if the support of g occurs after the support of f. A sequence (f_i) is a block sequence if $f_i < f_j$ for $i < j$. We consider two operations in FIN_k:

(i) Sum: $(f + g)(x) = f(x) + g(x)$ for $f < g$,

(ii) Tetris: $T : \text{FIN}_k \rightarrow \text{FIN}_{k-1}$.

For $f \in \text{FIN}_k$, $(Tf)(x) = \max\{0, f(x) - 1\}$. The space generated by a block sequence $(f_i)_{i \in \mathbb{N}}$ is $\langle f_i \rangle_{i \in \mathbb{N}} = \{Tl_1(f_{i_1}) + \ldots + Tl_n(f_{i_n}) : i_1 < \ldots < i_n, \min\{l_1, \ldots, l_n\} = 0\}$.

Diana Ojeda-Aristizabal
Finite forms of Gowers’ FIN_k Theorem
The structure FIN_k

For a fixed $k \in \mathbb{N}$, FIN_k is the set of all finitely supported functions $f : \mathbb{N} \to \{0, 1, \ldots, k\}$ that attain the maximum value k. Given $f, g \in \text{FIN}_k$ we say that $f < g$ if the support of g occurs after the support of f. A sequence (f_i) is a block sequence if $f_i < f_j$ for $i < j$. We consider two operations in FIN_k:

(i) *Sum:* $(f + g)(x) = f(x) + g(x)$ for $f < g$,

(ii) *Tetris:* $T : \text{FIN}_k \to \text{FIN}_{k-1}$.

For $f \in \text{FIN}_k$, $(Tf)(x) = \max\{0, f(x) - 1\}$.
The structure FIN_k

For a fixed $k \in \mathbb{N}$, FIN_k is the set of all finitely supported functions $f : \mathbb{N} \to \{0, 1, \ldots, k\}$ that attain the maximum value k. Given $f, g \in \text{FIN}_k$ we say that $f < g$ if the support of g occurs after the support of f. A sequence (f_i) is a block sequence if $f_i < f_j$ for $i < j$. We consider two operations in FIN_k:

(i) **Sum:** $(f + g)(x) = f(x) + g(x)$ for $f < g$,

(ii) **Tetris:** $T : \text{FIN}_k \to \text{FIN}_{k-1}$.

For $f \in \text{FIN}_k$, $(Tf)(x) = \max\{0, f(x) - 1\}$.

The space generated by a block sequence $(f_i)_{i \in I}$ is

$$\langle f_i \rangle_{i \in \mathbb{N}} = \{ T^{l_1}(f_{i_1}) + \ldots + T^{l_n}(f_{i_n}) : i_1 < \ldots < i_n, \min\{l_1, \ldots, l_n\} = 0 \}.$$
The structure FIN_k
Theorem

[Gow92] For any finite coloring $c : \text{FIN}_k \rightarrow r$ there exists a block sequence $(f_i)_{i \in \mathbb{N}}$ that generates a monochromatic subspace.
The structure FIN^\pm_k

For a fixed $k \in \mathbb{N}$, FIN^\pm_k is the set of all functions $f : \mathbb{N} \to \{-k, \ldots, -1, 0, 1, \ldots, k\}$ that attain one of the values k or $-k$ at least once and whose support is finite.
The structure FIN^\pm_k

For a fixed $k \in \mathbb{N}$, FIN^\pm_k is the set of all functions $f : \mathbb{N} \rightarrow \{-k, \ldots, -1, 0, 1, \ldots, k\}$ that attain one of the values k or $-k$ at least once and whose support is finite. We consider two operations in FIN^\pm_k defined pointwise as follows:

(i) \textit{Sum:} $(f + g)(n) = f(n) + g(n)$ for $f < g$,

(ii) \textit{Tetris:} $T : \text{FIN}^\pm_k \rightarrow \text{FIN}^\pm_{k-1}$. For $f \in \text{FIN}^\pm_k$,

$$(Tf)(n) = \begin{cases} f(n) - 1 & \text{if } f(n) > 0 \\ f(n) + 1 & \text{if } f(n) < 0 \\ 0 & \text{otherwise.} \end{cases}$$
The structure FIN_k^\pm

For a fixed $k \in \mathbb{N}$, FIN_k^\pm is the set of all functions $f : \mathbb{N} \rightarrow \{-k, \ldots, -1, 0, 1, \ldots, k\}$ that attain one of the values k or $-k$ at least once and whose support is finite. We consider two operations in FIN_k^\pm defined pointwise as follows:

(i) Sum: $(f + g)(n) = f(n) + g(n)$ for $f < g$,
(ii) Tetris: $T : \text{FIN}_k^\pm \rightarrow \text{FIN}_{k-1}^\pm$. For $f \in \text{FIN}_k^\pm$,

$$(Tf)(n) = \begin{cases} f(n) - 1 & \text{if } f(n) > 0 \\ f(n) + 1 & \text{if } f(n) < 0 \\ 0 & \text{otherwise.} \end{cases}$$

The space generated by a block sequence $(f_i)_{i \in I}$ is

$$\langle f_i \rangle_{i \in I}^\pm = \{ \delta_0 T^{l_0}(f_{i_0}) + \ldots + \delta_n T^{l_n}(f_{i_n}) : i_0 < \ldots < i_n, \min\{l_0, \ldots, l_n\} = 0, \delta_i = \pm 1, n \in \mathbb{N} \}.$$
The FIN_k^\pm theorem

Theorem

[Gow92] For any finite coloring $c : \text{FIN}_k^\pm \to \{0, \ldots, r-1\}$ there exists an infinite block sequence $(f_i)_{i \in \mathbb{N}}$ such that the space $\langle f_i \rangle_{i \in \mathbb{N}}^\pm$ generated by the sequence $(f_i)_{i \in \mathbb{N}}$ is almost monochromatic; in the sense that there exists $i < r$ such that $\langle f_i \rangle_{i \in \mathbb{N}}^\pm \subseteq (c^{-1}(i))_1$.

Diana Ojeda-Aristizabal

Finite forms of Gowers’ FIN_k Theorem
The \(\text{FIN}^\pm_k \) theorem

Theorem

[Gow92] For any finite coloring \(c : \text{FIN}^\pm_k \rightarrow \{0, \ldots, r - 1\} \) there exists an infinite block sequence \((f_i)_{i \in \mathbb{N}} \) such that the space \(\langle f_i \rangle_{i \in \mathbb{N}}^\pm \) generated by the sequence \((f_i)_{i \in \mathbb{N}} \) is almost monochromatic; in the sense that there exists \(i < r \) such that \(\langle f_i \rangle_{i \in \mathbb{N}}^\pm \subseteq (c^{-1}(i))_1 \).

In the structure \(\text{FIN}^\pm_k \) we consider the metric defined by
\[
\| f - g \|_\infty = \max\{ |f(n) - g(n)| : n \in \mathbb{N} \}.
\]
For \(A \subset \text{FIN}^\pm_k \) let
\[
(A)_1 = \{ g : \| f - g \|_\infty \leq 1 \text{ for some } f \in A \}.
\]
Theorem

[Hin74] For every finite coloring of FIN there exists an infinite sequence $x_0 < x_1 < \ldots$ such that all the finite unions of elements of the sequence have the same color.
Hindman’s theorem, Folkman’s theorem

Theorem

\[\text{[Hin74]}\] For every finite coloring of \(\text{FIN}\) there exists an infinite sequence \(x_0 < x_1 < \ldots\) such that all the finite unions of elements of the sequence have the same color.

Theorem

\[\text{[NR83]}\] For every \(n \in \mathbb{N}\) there exists \(M = M(n)\) such that for any coloring \(c : \text{FIN}(M) \rightarrow 2\) there exists a sequence \(x_0 < \ldots < x_{n-1}\) of finite subsets of \(M\) such that the set of finite unions of the sets \(x_0, \ldots, x_{n-1}\) is monochromatic.
In [OA] we obtain direct combinatorial proofs of the finite versions of the FIN_k Theorem and of the FIN_k^\pm Theorem.
Theorem

For any $m, k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that for every 2-coloring of $\text{FIN}_k(n)$, the functions in FIN_k supported below n, there exists a block sequence in $\text{FIN}_k(n)$ of length m that generates a monochromatic subspace.
Theorem

For any $m, k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that for every 2-coloring of $\text{FIN}_k(n)$, the functions in FIN_k supported below n, there exists a block sequence in $\text{FIN}_k(n)$ of length m that generates a monochromatic subspace.

Let $g_k(m)$ be the minimal n given by the theorem. The bounds found in [OA] for $k > 1$ in are

$$g_k(n) \leq f_{4+2(k-1)} \circ f_4(6m),$$

where for $i \in \mathbb{N}$, f_i denotes the i-th function in the Ackermann Hierarchy.
The proof goes by induction on k. The strategy is to code an element of FIN_{k+1} in a sequence of elements of FIN_k and apply the result for k and its higher dimensional versions.
The proof goes by induction on k. The strategy is to code an element of FIN_{k+1} in a sequence of elements of FIN_k and apply the result for k and its higher dimensional versions.

For $k, n, d \in \mathbb{N}$, the d-dimensional version of $\text{FIN}_k(n)$ is

$$\text{FIN}_k(n)[d] = \{(f_i)_{i < d} \mid f_i \in \text{FIN}_k(n) \text{ and } f_i < f_j \text{ for } i < j < d\}.$$
The proof goes by induction on k. The strategy is to code an element of FIN_{k+1} in a sequence of elements of FIN_k and apply the result for k and its higher dimensional versions.

For $k, n, d \in \mathbb{N}$, the d-dimensional version of $\text{FIN}_k(n)$ is

$$\text{FIN}_k(n)[d] = \{(f_i)_{i<d} \mid f_i \in \text{FIN}_k(n) \text{ and } f_i < f_j \text{ for } i < j < d\}.$$

Similarly, if $(f_i)_{i<l}$ is a block sequence, we define $(\langle f_i \rangle_{i<l})[d]$ to be the collection of block subsequences of $(f_i)_{i<l}$ of length d.
Higher-dimensional version

The formulation of the theorem, including dimensions is

Theorem

For every $k, m, d \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that for every coloring $c : \text{FIN}_k(n)^[d] \to 2$ there exists $(f_i)_{i < m} \in \text{FIN}_k(n)^[m]$ such that $c \upharpoonright (\langle f_i \rangle_{i < m})^[[d]]$ is constant.
The following definition is important when coding an element of FIN_{k+1} in a sequence of elements of FIN_k.
The following definition is important when coding an element of FIN_{k+1} in a sequence of elements of FIN_k.

Given $f = (f_i)_{i < m} \in \text{FIN}^{[m]}_{k+1}$, for

$$g = \sum_{i < m} T^{n_i} f_i,$$

we define $\text{supp}^f_{k+1}(g)$ to be the set of all $i < m$ such that $n_i = 0$.
The FIN_k Theorem
Precursors in Ramsey theory
The finite versions
Closing remarks

The positive case
Working with signs

Diana Ojeda-Aristizabal
Finite forms of Gowers' FIN_k Theorem
Lemma

[OA] For every $N \in \mathbb{N}$ there exists \bar{N} such that for every $c : \text{FIN}_{k+1}(\bar{N}) \rightarrow 2$ there exists $h = (h_i)_{i < N} \in \text{FIN}_{k+1}(\bar{N})^{[N]}$ such that for

$$f = \sum_{i < N} T^{s_i}(h_i)$$

$$g = \sum_{i < N} T^{t_i}(h_i),$$

$c(f) = c(g)$ whenever $\text{supp}^h_{k+1}(f) = \text{supp}^h_{k+1}(g)$, that is, whenever for all $i < N$, $s_i = 0$ if and only if $t_i = 0$.
The FIN_k Theorem
Precursors in Ramsey theory
The finite versions
Closing remarks

The positive case
Working with signs
Assume the result for k. Given a coloring of FIN_{k+1}, use the result for k and its higher dimensional versions and reduce the coloring to a coloring of finite sets. Finally apply Folkman’s Theorem.
Theorem

For any $m, k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that for every 2-coloring c of $\text{FIN}_k^\pm(n)$, the functions in FIN_k^\pm supported below n, there exist $i < 2$ and a block sequence $(f_i)_{i < m}$ in $\text{FIN}_k^\pm(n)$ such that $\langle f_i \rangle_{i < m}^\pm \subseteq (c^{-1}(i))_1$.

Let $g_k^\pm(n)$ be the minimal n given by the theorem. The bounds we find in [OA] for $k > 1$ are $g_k(n) \leq f_{4+2((k-1)\circ f_4)(12m)}$, where for $i \in \mathbb{N}$, f_i denotes the i-th function in the Ackermann Hierarchy.
Theorem

*For any $m, k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that for every 2-coloring c of FIN\(\pm\)\(_k\)(n), the functions in FIN\(\pm\)\(_k\) supported below n, there exist $i < 2$ and a block sequence $(f_i)_{i \leq m}$ in FIN\(\pm\)\(_k\)(n) such that $\langle f_i \rangle_{i < m} \subseteq (c^{-1}(i))_1$.

Let $g_k^\pm(m)$ be the minimal n given by the theorem. The bounds we find in [OA] for $k > 1$ are

$$g_k(n) \leq f_{4+2(k-1)} \circ f_4(12m),$$

where for $i \in \mathbb{N}$, f_i denotes the i-th function in the Ackermann Hierarchy.
We prove the FIN_k^\pm Theorem using the following lemma:

Lemma

[Kan04] For all $m, k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that for every 2-coloring of $\text{FIN}_k^\pm(n)$, the functions in FIN_k^\pm supported below n, there exists a block sequence $(f_i)_{i < m}$ of elements of $\text{FIN}_k^\pm(n)$ such that the set

$$\langle f_i \rangle_{i < m} = \left\{ (-T)^{l_0} f_{i_0} + \ldots + (-T)^{l_s} f_{i_s} : i_0 < \ldots < i_s \right\}$$

$$\min\{l_0, \ldots, l_s\} = 0, s \leq m$$

is monochromatic.
Let $\text{FIN}_k^-(n)$ be the set of functions $f : \mathbb{N} \to \{(-1)^j(k-j) : j = 0, 1, \ldots, k\}$ supported below n.
Let $\text{FIN}^{-}_k(n)$ be the set of functions $f : \mathbb{N} \to \{(-1)^j(k - j) : j = 0, 1, \ldots, k\}$ supported below n.

The structures $(\text{FIN}_k(n), +, T)$ and $(\text{FIN}^{-}_k(n), +, -T)$ are isomorphic as witnessed by the map $I : \text{FIN}^{-}_k(n) \to \text{FIN}_k(n)$ that sends each $f \in \text{FIN}^{-}_k(n)$ to its pointwise absolute value.
Let $\text{FIN}_k^-(n)$ be the set of functions $f : \mathbb{N} \to \{(-1)^j(k - j) : j = 0, 1, \ldots, k\}$ supported below n.

The structures $(\text{FIN}_k(n), +, T)$ and $(\text{FIN}_k^-(n), +, -T)$ are isomorphic as witnessed by the map $I : \text{FIN}_k^-(n) \to \text{FIN}_k(n)$ that sends each $f \in \text{FIN}_k^-(n)$ to its pointwise absolute value.

This follows from the fact that $I^{-1} \circ T(g) = -T \circ I^{-1}(g)$ for all $g \in \text{FIN}_k^n$.

Let $\text{FIN}_k^-(n)$ be the set of functions $f : \mathbb{N} \to \{(-1)^j(k - j) : j = 0, 1, \ldots, k\}$ supported below n.

The structures $(\text{FIN}_k(n), +, T)$ and $(\text{FIN}_k^-(n), +, -T)$ are isomorphic as witnessed by the map $I : \text{FIN}_k^-(n) \to \text{FIN}_k(n)$ that sends each $f \in \text{FIN}_k^-(n)$ to its pointwise absolute value.

This follows from the fact that $I^{-1} \circ T(g) = -T \circ I^{-1}(g)$ for all $g \in \text{FIN}_k^n$.

Note that the inverse image of a block sequence $(g_i)_{i < m}$ in $\text{FIN}_k(n)$ is a block sequence in $\text{FIN}_k^-(n)$, and $I^{-1}(\langle g_i \rangle_{i < m}) = \langle I^{-1}(g_i) \rangle_{i < m}^{(-T)}$.
Lemma

[OA] Let \((f_i)_{i<2m}\) be a block sequence of elements of \(\text{FIN}_k^\pm\). If we set \(h_i = f_{2i} - f_{2i+1}\) for each \(i < m\), then \(\langle h_i \rangle_{i<m}^\pm \subseteq \langle \langle f_i \rangle (-T) \rangle_1\).
Lemma

[OA] Let \((f_i)_{i<2m}\) be a block sequence of elements of \(\text{FIN}_k^\pm\). If we set \(h_i = f_{2i} - f_{2i+1}\) for each \(i < m\), then \(\langle h_i \rangle_{i<m}^\pm \subseteq (\langle f_i \rangle(-T))_1\).

To illustrate this, suppose we have \(f_0^0 < f_0^1 < f_1^0 < f_1^1\). Let \(h_i = f_i^0 - f_i^1\) for \(i < 2\), and say we want to approximate \(\delta_0 T^3(h_0) + \delta_1 h_1\), where \(\delta_0 = -1\) and \(\delta_1 = 1\).
Lemma

[OA] Let $(f_i)_{i<2m}$ be a block sequence of elements of FIN_k^{\pm}. If we set $h_i = f_{2i} - f_{2i+1}$ for each $i < m$, then $\langle h_i \rangle_{i<m}^{\pm} \subseteq (\langle f_i \rangle (\mp T))_1$.

To illustrate this, suppose we have $f_0^0 < f_0^1 < f_1^0 < f_1^1$. Let $h_i = f_i^0 - f_i^1$ for $i < 2$, and say we want to approximate $\delta_0 T^3(h_0) + \delta_1 h_1$, where $\delta_0 = -1$ and $\delta_1 = 1$.

$$\delta_0 T^3(f_0^0) - \delta_0 T^3(f_0^1) + \delta_1 f_1^0 - \delta_1 f_1^1$$
Lemma

[OA] Let \((f_i)_{i < 2m}\) be a block sequence of elements of \(\text{FIN}^\pm_k\). If we set \(h_i = f_{2i} - f_{2i+1}\) for each \(i < m\), then \(\langle h_i \rangle_{i < m}^\pm \subseteq (\langle f_i \rangle(-T))^1\).

To illustrate this, suppose we have \(f_0^0 < f_0^1 < f_1^0 < f_1^1\). Let \(h_i = f_i^0 - f_i^1\) for \(i < 2\), and say we want to approximate \(\delta_0 T^3(h_0) + \delta_1 h_1\), where \(\delta_0 = -1\) and \(\delta_1 = 1\).

\[
\begin{align*}
\delta_0 T^3(f_0^0) & - \delta_0 T^3(f_0^1) + \delta_1 f_1^0 - \delta_1 f_1^1 \\
(-T)^3(f_0^0) &
\end{align*}
\]
Lemma

[OA] Let \((f_i)_{i<2m}\) be a block sequence of elements of \(\text{FIN}_k^\pm\). If we set \(h_i = f_{2i} - f_{2i+1}\) for each \(i < m\), then \(\langle h_i \rangle_{i<m}^\pm \subseteq (\langle f_i \rangle^(-T))_1\).

To illustrate this, suppose we have \(f_0^0 < f_0^1 < f_1^0 < f_1^1\). Let \(h_i = f_i^0 - f_i^1\) for \(i < 2\), and say we want to approximate \(\delta_0 T^3(h_0) + \delta_1 h_1\), where \(\delta_0 = -1\) and \(\delta_1 = 1\).

\[
\begin{align*}
\delta_0 T^3(f_0^0) & - \delta_0 T^3(f_0^1) + \delta_1 f_1^0 - \delta_1 f_1^1 \\
(-T)^3(f_0^0) & - (-T)^4(f_0^1)
\end{align*}
\]
Lemma

[OA] Let \((f_i)_{i<2m}\) be a block sequence of elements of \(\text{FIN}_k^\pm\). If we set \(h_i = f_{2i} - f_{2i+1}\) for each \(i < m\), then \(\langle h_i \rangle_{i<m}^\pm \subseteq (\langle f_i \rangle (-T))^1\).

To illustrate this, suppose we have \(f_0^0 < f_0^1 < f_1^0 < f_1^1\). Let \(h_i = f_i^0 - f_i^1\) for \(i < 2\), and say we want to approximate \(\delta_0 T^3(h_0) + \delta_1 h_1\), where \(\delta_0 = -1\) and \(\delta_1 = 1\).

\[
\begin{align*}
\delta_0 T^3(f_0^0) & - \delta_0 T^3(f_0^1) + \delta_1 f_1^0 - \delta_1 f_1^1 \\
(-T)^3(f_0^0) & (-T)^4(f_0^1) + f_1^0
\end{align*}
\]
Lemma

[OA] Let $(f_i)_{i < 2m}$ be a block sequence of elements of FIN_k^\pm. If we set $h_i = f_{2i} - f_{2i+1}$ for each $i < m$, then $\langle h_i \rangle_{i < m}^\pm \subseteq (\langle f_i \rangle (-T))_1$.

To illustrate this, suppose we have $f_0^0 < f_0^1 < f_1^0 < f_1^1$. Let $h_i = f_i^0 - f_i^1$ for $i < 2$, and say we want to approximate $\delta_0 T^3(h_0) + \delta_1 h_1$, where $\delta_0 = -1$ and $\delta_1 = 1$.

\[
\begin{align*}
\delta_0 T^3(f_0^0) & \quad -\delta_0 T^3(f_0^1) & \quad +\delta_1 f_1^0 & \quad -\delta_1 f_1^1 \\
(-T)^3(f_0^0) & \quad (-T)^4(f_0^1) & \quad +f_1^0 & \quad (-T)f_1^1
\end{align*}
\]
Summary

We find $A \subset \text{FIN}_k^\pm(n)$ such that $(A, +, - T) \cong (\text{FIN}_k(n), +, T)$ and note that one can approximate elements of $\text{FIN}_k^\pm(n)$ by elements of A using the operation $- T$.
This method for obtaining the theorem with signs from the positive theorem also works in the infinite case.
Closing remarks

- This method for obtaining the theorem with signs from the positive theorem also works in the infinite case.
- Currently is no proof of the infinite FIN_k Theorem that avoid the use of idempotent ultrafilters. The proof we present of the finite version cannot be adapted to the infinite case.
This method for obtaining the theorem with signs from the positive theorem also works in the infinite case.

Currently is no proof of the infinite FIN_k Theorem that avoid the use of idempotent ultrafilters. The proof we present of the finite version cannot be adapted to the infinite case.

Tyros [Tyr] obtained a different proof of the finite FIN_k Theorem and of the finite FIN_k^\pm theorem that provide upper bounds at the the level of f_4 for all k.
W. T. Gowers.
Lipschitz functions on classical spaces.

N. Hindman.
Finite sums from sequences within cells of a partition of N.

V. Kanellopoulos.
A proof of W. T. Gowers’ c_0 theorem.
J. Nešetřil and V. Rödl.
Another proof of the Folkman-Rado-Sanders theorem.

D. C. Ojeda-Aristizábal.
Finite forms of Gowers’ theorem on the oscillation stability of c_0.
To appear in Combinatorica.

K. Tyros.
Primitive recursive bounds for the finite version of Gowers’ c_0 theorem.
Available at arxiv.org/abs/1401.8073.