Long Cut and Choose games and the infinite distributive law

Toshimichi Usuba (薄葉 季路)

Kobe University

June 8, 2015

BLAST2015@UNT, Univerisity of North Texas, USA
In this talk, we are going to discuss the infinite distributive law and Cut and Choose games on complete Boolean algebras. We will show that if $\kappa > \omega$, the Cut and Choose game $\mathcal{G}_{<\omega}^\kappa$ characterizes the (κ, ∞)-distributivity.

Throughout this talk:

- complete Boolean algebra (cBa) will be assumed to be atomless; $\forall b > 0 \exists c (b > c > 0)$.
- \mathcal{B} denotes a cBa, and $\mathcal{B}^+ = \mathcal{B} \setminus \{0\}$.
In this talk, we are going to discuss the infinite distributive law and Cut and Choose games on complete Boolean algebras. We will show that if $\kappa > \omega$, the Cut and Choose game $G^K_{<\omega}$ characterizes the (κ, ∞)-distributivity.

Throughout this talk:

- complete Boolean algebra (cBa) will be assumed to be atomless; $\forall b > 0 \exists c \ (b > c > 0)$.
- \mathcal{B} denotes a cBa, and $\mathcal{B}^+ = \mathcal{B} \setminus \{0\}$.

Definition 1

\(\kappa \): infinite cardinal.

\(\mathcal{B} \) is \((\kappa, \infty)\)-distributive

\[\iff \text{For every cardinal } \lambda \text{ and } \{ b_{\alpha, \beta} : \alpha < \kappa, \beta < \lambda \} \subseteq \mathcal{B}^+, \]

\[\bigwedge_{\alpha < \kappa} \bigvee_{\beta < \lambda} b_{\alpha, \beta} = \bigvee_{f: \kappa \rightarrow \lambda} \bigwedge_{\alpha < \kappa} b_{\alpha, f(\alpha)}. \]
Fact 2

T.F.A.E. for κ and \mathcal{B};

1. \mathcal{B} is (κ, ∞)-distributive.

2. For every $b \in \mathcal{B}^+$ and every \mathcal{B}^+-name \dot{f} for a function from κ to V, there is $c \leq b$ and $g : \kappa \to V$ such that $c \models_{\mathcal{B}^+} \text{“} \dot{f} = g \text{”}$.

3. For every $b \in \mathcal{B}^+$ and every partitions $\langle l_\alpha : \alpha < \kappa \rangle$ of b, there is $b_\alpha \in l_\alpha (\alpha < \kappa)$ such that $\bigwedge_{\alpha < \kappa} b_\alpha > 0$.

- $I \subseteq \mathcal{B}^+$ is an antichain of \mathcal{B} if $b \land c = 0$ for every distinct $b, c \in I$.

- For $b \in \mathcal{B}^+$, a partition of b is an antichain I with $\bigvee I = b$.

Fact 2

T.F.A.E. for κ and B;

1. B is (κ, ∞)-distributive.

2. For every $b \in B^+$ and every B^+-name \dot{f} for a function from κ to V, there is $c \leq b$ and $g : \kappa \to V$ such that $c \Vdash_{B^+} \langle \dot{f} = g \rangle$.

3. For every $b \in B^+$ and every partitions $\langle l_\alpha : \alpha < \kappa \rangle$ of b, there is $b_\alpha \in l_\alpha$ ($\alpha < \kappa$) such that $\bigwedge_{\alpha < \kappa} b_\alpha > 0$.

- $l \subseteq B^+$ is an antichain of B if $b \land c = 0$ for every distinct $b, c \in l$.
- For $b \in B^+$, a partition of b is an antichain l with $\lor l = b$.
Cut and Choose Game

Definition 3 (Jech)

\(\kappa\): infinite cardinal

Let \(G^K\) be the following two player game on cBA \(\mathcal{B}\): First, ONE fixes \(b^* \in \mathcal{B}^+\). At each stage,

1. ONE chooses a partition \(l_\alpha\) of \(b^*\).
2. TWO takes \(b_\alpha \in l_\alpha\).

\[
\begin{array}{c|cccc}
\text{ONE} & b^* & l_0 & l_1 & \cdots & l_\alpha & \cdots \\
\hline
\text{TWO} & b_0 & b_1 & \cdots & b_\alpha & \cdots
\end{array}
\]

For a play \(\langle l_\alpha, b_\alpha : \alpha < \kappa \rangle\),

- TWO wins if \(\bigwedge_{\alpha < \kappa} b_\alpha > 0\).
- Otherwise ONE wins.
Definition 3 (Jech)

κ: infinite cardinal

Let G^κ be the following two player game on cBA \mathcal{B}: First, ONE fixes $b^* \in \mathcal{B}^+$. At each stage,

1. ONE chooses a partition l_α of b^*.
2. TWO takes $b_\alpha \in l_\alpha$.

\[
\begin{array}{c|cccccc}
\text{ONE} & b^* & l_0 & l_1 & \cdots & l_\alpha & \cdots \\
\hline
\text{TWO} & b_0 & b_1 & \cdots & b_\alpha & \cdots
\end{array}
\]

For a play $\langle l_\alpha, b_\alpha : \alpha < \kappa \rangle$,

- TWO wins if $\bigwedge_{\alpha < \kappa} b_\alpha > 0$.
- Otherwise ONE wins.
Cut and Choose Game

Definition 3 (Jech)

\(\kappa \): infinite cardinal

Let \(G^\kappa \) be the following two player game on cBA \(\mathcal{B} \): First, ONE fixes \(b^* \in \mathcal{B}^+ \). At each stage,

1. ONE chooses a partition \(l_\alpha \) of \(b^* \).
2. TWO takes \(b_\alpha \in l_\alpha \).

\[
\begin{array}{c|cccccc}
\text{ONE} & b^* & l_0 & l_1 & \cdots & l_\alpha & \cdots \\
\hline
\text{TWO} & b_0 & b_1 & \cdots & b_\alpha & \cdots \\
\end{array}
\]

For a play \(\langle l_\alpha, b_\alpha : \alpha < \kappa \rangle \),

- TWO wins if \(\wedge_{\alpha < \kappa} b_\alpha > 0 \).
- Otherwise ONE wins.
Definition 3 (Jech)

\(\kappa \): infinite cardinal

Let \(G^\kappa \) be the following two player game on cBA \(B \): First, ONE fixes \(b^* \in B^+ \). At each stage,

1. ONE chooses a partition \(l_\alpha \) of \(b^* \).
2. TWO takes \(b_\alpha \in l_\alpha \).

<table>
<thead>
<tr>
<th>ONE</th>
<th>(b^*)</th>
<th>(l_0)</th>
<th>(l_1)</th>
<th>(\ldots)</th>
<th>(l_\alpha)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO</td>
<td>(b_0)</td>
<td>(b_1)</td>
<td>(\ldots)</td>
<td>(b_\alpha)</td>
<td>(\ldots)</td>
<td></td>
</tr>
</tbody>
</table>

For a play \(\langle l_\alpha, b_\alpha : \alpha < \kappa \rangle \),

- TWO wins if \(\land_{\alpha < \kappa} b_\alpha > 0 \).
- Otherwise ONE wins.
Fact 4 (Jech)

1. If ONE does not have a winning strategy in the G^κ on B, then B is (κ, ∞)-distributive.
2. The converse also holds.
3. That is, B is (κ, ∞)-distributive if and only if ONE does not have a winning strategy in G^κ on B.
Weak infinite distributivity

Definition 5

\(\kappa \): infinite cardinal, \(\mu \): (finite or infinite) cardinal. \(\mathcal{B} \) is \((\kappa, \infty, < \mu)\)-distributive if

- For every \(b \in \mathcal{B}^+ \) and every partitions \(\langle I_\alpha : \alpha < \kappa \rangle \) of \(b \), there is \(J_\alpha \subseteq I_\alpha \ (\alpha < \kappa) \) such that \(|J_\alpha| < \mu \) and \(\bigwedge_{\alpha<\kappa} \bigvee J_\alpha > 0 \).

- \(\iff \) For every \(b \in \mathcal{B}^+ \) and every \(\mathcal{B}^+ \)-name \(\dot{f} \) for a function from \(\kappa \) to \(V \), there is \(c \leq b \) and \(g : \kappa \to V \) such that \(|g(\alpha)| < \mu \) and \(c \models_{\mathcal{B}^+} \forall \alpha < \kappa \ (\dot{f}(\alpha) \in g(\alpha)) \).

So \((\kappa, \infty)\)-distributive \(\iff \) \((\kappa, \infty, < 2)\)-distributive.
Weak infinite distributivity

Definition 5

\(\kappa \): infinite cardinal, \(\mu \): (finite or infinite) cardinal. \(\mathcal{B} \) is \((\kappa, \infty, < \mu)\)-distributive if

- For every \(b \in \mathcal{B}^+ \) and every partitions \(\langle l_\alpha : \alpha < \kappa \rangle \) of \(b \), there is \(J_\alpha \subseteq l_\alpha \) (\(\alpha < \kappa \)) such that \(|J_\alpha| < \mu \) and \(\bigwedge_{\alpha < \kappa} \bigvee J_\alpha > 0 \).

- \(\iff \) For every \(b \in \mathcal{B}^+ \) and every \(\mathcal{B}^+ \)-name \(\check{f} \) for a function from \(\kappa \) to \(V \), there is \(c \leq b \) and \(g : \kappa \rightarrow V \) such that \(|g(\alpha)| < \mu \) and \(c \Vdash_{\mathcal{B}^+} \forall \alpha < \kappa \left(\check{f}(\alpha) \in g(\alpha) \right) \).

So \((\kappa, \infty)\)-distributive \(\iff \) \((\kappa, \infty, < 2)\)-distributive.
Weak infinite distributivity

Definition 5

κ: infinite cardinal, μ: (finite or infinite) cardinal. B is (κ, ∞, < μ)-distributive if

- For every \(b \in B^+ \) and every partitions \(\langle l_\alpha : \alpha < \kappa \rangle \) of \(b \), there is \(J_\alpha \subseteq l_\alpha \) (\(\alpha < \kappa \)) such that \(|J_\alpha| < \mu \) and \(\bigwedge_{\alpha < \kappa} \bigvee J_\alpha > 0 \).
- \(\iff \) For every \(b \in B^+ \) and every \(B^+ \)-name \(\dot{f} \) for a function from \(\kappa \) to \(V \), there is \(c \leq b \) and \(g : \kappa \to V \) such that \(|g(\alpha)| < \mu \) and \(c \models_{B^+} \forall \alpha < \kappa (\dot{f}(\alpha) \in g(\alpha)) \).

So (κ, ∞)-distributive \(\iff \) (κ, ∞, < 2)-distributive.
Remark 6

If \mathcal{B} is $(\kappa, \infty, < n)$-distributive for some natural number $n \geq 2$, then \mathcal{B} is (κ, ∞)-distributive. Hence one may assume μ is 2 or an infinite cardinal.

Definition 7

\mathcal{B} is weakly (κ, ∞)-distributive if \mathcal{B} is $(\kappa, \infty, < \omega)$-distributive.

There are many interesting cBas which are weakly (ω, ∞)-distributive but not (ω, ∞)-distributive;

- Random algebra, (completion of) Sacks forcing,...
Remark 6

If B is $(\kappa, \infty, < n)$-distributive for some natural number $n \geq 2$, then B is (κ, ∞)-distributive. Hence one may assume μ is 2 or an infinite cardinal.

Definition 7

B is weakly (κ, ∞)-distributive if B is $(\kappa, \infty, < \omega)$-distributive.

There are many interesting cBas which are weakly ω-distributive but not (ω, ∞)-distributive;

- Random algebra, (completion of) Sacks forcing,...
The game corresponding the weak \((\kappa, \infty)\)-distributivity is \(G^\kappa<\omega\):

Definition 8 (Jech)

\(\kappa\): infinite cardinal, \(\mu\): (finite or infinite) cardinal

Let \(G^\kappa<\mu\) be the following two player game on cBA \(B\):

First, ONE fixes \(b^* \in B^+\). At each stage,

1. ONE chooses a partition \(l_\alpha\) of \(b^*\).
2. TWO takes \(J_\alpha \subseteq l_\alpha\) with \(|J_\alpha| < \mu\).

<table>
<thead>
<tr>
<th>ONE</th>
<th>(b^*)</th>
<th>(l_0)</th>
<th>(l_1)</th>
<th>(\ldots)</th>
<th>(l_\alpha)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TWO</td>
<td></td>
<td>(J_0)</td>
<td>(J_1)</td>
<td>(\ldots)</td>
<td>(J_\alpha)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

For a play \(\langle l_\alpha, J_\alpha : \alpha < \kappa \rangle\),

- TWO wins if \(\bigwedge_{\alpha < \kappa} (\bigvee J_\alpha) > 0\).
- Otherwise ONE wins.
The game corresponding the weak \((\kappa, \infty)\)-distributivity is \(G_{<\omega}^\kappa\):

Definition 8 (Jech)

\(\kappa\): infinite cardinal, \(\mu\): (finite or infinite) cardinal
Let \(G_{<\mu}^\kappa\) be the following two player game on cBA \(B\): First, ONE fixes \(b^* \in B^+\). At each stage,

1. ONE chooses a partition \(I_\alpha\) of \(b^*\).
2. TWO takes \(J_\alpha \subseteq I_\alpha\) with \(|J_\alpha| < \mu\).

\[
\begin{array}{c|cccccc}
 \text{ONE} & b^* & I_0 & I_1 & \cdots & I_\alpha & \cdots \\
 \text{TWO} & J_0 & J_1 & \cdots & J_\alpha & \cdots \\
\end{array}
\]

For a play \(\langle I_\alpha, J_\alpha : \alpha < \kappa \rangle\),

- TWO wins if \(\land_{\alpha < \kappa} (\lor J_\alpha) > 0\).
- Otherwise ONE wins.
Fact 9 (Jech)

If ONE does not have a winning strategy in $G^{\kappa}_{<\mu}$ on \mathcal{B}, then \mathcal{B} is $(\kappa, \infty, < \mu)$-distributive.

Hence the following are equivalent for κ, \mathcal{B}, and a natural number $n \geq 2$:

1. \mathcal{B} is $(\kappa, \infty, < n)$-distributive.
2. ONE does not have a winning strategy in $G^{\kappa}_{<n}$ on \mathcal{B}.

Question 10 (Jech)

If \mathcal{B} is weakly (κ, ∞)-distributive, does ONE have no winning strategy in $G^{\kappa}_{<\omega}$ on \mathcal{B}?
Fact 9 (Jech)

If ONE does not have a winning strategy in $G_{<\mu}^\kappa$ on \mathcal{B}, then \mathcal{B} is $(\kappa, \infty, < \mu)$-distributive.

Hence the following are equivalent for κ, \mathcal{B}, and a natural number $n \geq 2$:

1. \mathcal{B} is $(\kappa, \infty, < n)$-distributive.
2. ONE does not have a winning strategy in $G_{<n}^\kappa$ on \mathcal{B}.

Question 10 (Jech)

If \mathcal{B} is weakly (κ, ∞)-distributive, does ONE have no winning strategy in $G_{<\omega}^\kappa$ on \mathcal{B}?
Fact 11 (Kamburelis)

There is a cBa \mathcal{B} which is weakly (ω, ∞)-distributive but ONE has a winning strategy in $\mathcal{G}^\omega_{<\omega}$ on \mathcal{B}.

So the game $\mathcal{G}^\omega_{<\omega}$ does not characterize the weak (ω, ∞)-distributivity.

Question 12

How about the game $\mathcal{G}^\kappa_{<\omega}$ and the weak (κ, ∞)-distributivity for $\kappa > \omega$?
Fact 11 (Kamburelis)

There is a cBa \mathcal{B} which is weakly (ω, ∞)-distributive but ONE has a winning strategy in $G^\omega_{<\omega}$ on \mathcal{B}.

So the game $G^\omega_{<\omega}$ does not characterize the weak (ω, ∞)-distributivity.

Question 12

How about the game $G^\kappa_{<\omega}$ and the weak (κ, ∞)-distributivity for $\kappa > \omega$?
Main result

Theorem 13

Let κ be an uncountable cardinal. If ONE does not have a winning strategy in $G^\kappa_{<\omega}$ on \mathcal{B}, then \mathcal{B} is (κ, ∞)-distributive.

Corollary 14

For an uncountable cardinal κ and a cBa \mathcal{B}, the following are equivalent:

1. ONE does not have a winning strategy in $G^\kappa_{<\omega}$ on \mathcal{B}.
2. \mathcal{B} is (κ, ∞)-distributive.
3. ONE does not have a winning strategy in G^κ on \mathcal{B}.

So when $\kappa > \omega$, the game $G^\kappa_{<\omega}$ characterizes the (κ, ∞)-distributivity.
Main result

Theorem 13

Let κ be an uncountable cardinal. If ONE does not have a winning strategy in $G^\kappa_{<\omega}$ on \mathcal{B}, then \mathcal{B} is (κ, ∞)-distributive.

Corollary 14

For an uncountable cardinal κ and a cBa \mathcal{B}, the following are equivalent:

1. ONE does not have a winning strategy in $G^\kappa_{<\omega}$ on \mathcal{B}.
2. \mathcal{B} is (κ, ∞)-distributive.
3. ONE does not have a winning strategy in G^κ on \mathcal{B}.

So when $\kappa > \omega$, the game $G^\kappa_{<\omega}$ characterizes the (κ, ∞)-distributivity.
However the difference between the (ω_1, ∞)-distributivity and the weak (ω_1, ∞)-distributivity is sensitive:

Lemma 15 (folklore?)

If $\kappa \geq 2^\omega$ and B is weakly (κ, ∞)-distributive, then B is in fact (κ, ∞)-distributive.

Corollary 16

Suppose the Continuum Hypothesis ($2^\omega = \omega_1$). For an uncountable cardinal κ and a cBa B, the following are equivalent:

1. ONE does not have a winning strategy in $G^\kappa_{<\omega}$ on B.
2. B is weakly (κ, ∞)-distributive.
3. B is (κ, ∞)-distributive.
4. ONE does not have a winning strategy in G^κ on B.

However the difference between the \((\omega_1, \infty)\)-distributivity and the weak \((\omega_1, \infty)\)-distributivity is sensitive:

Lemma 15 (folklore?)

If \(\kappa \geq 2^\omega\) and \(B\) is weakly \((\kappa, \infty)\)-distributive, then \(B\) is in fact \((\kappa, \infty)\)-distributive.

Corollary 16

Suppose the Continuum Hypothesis \((2^\omega = \omega_1)\). For an uncountable cardinal \(\kappa\) and a cBa \(B\), the following are equivalent:

1. ONE does not have a winning strategy in \(G^\kappa_{<\omega}\) on \(B\).
2. \(B\) is weakly \((\kappa, \infty)\)-distributive.
3. \(B\) is \((\kappa, \infty)\)-distributive.
4. ONE does not have a winning strategy in \(G^\kappa\) on \(B\).
Fact 17 (Folklore)

Let \mathcal{B} be the random algebra.

1. \mathcal{B} is not (ω, ∞)-distributive.

2. Suppose Martin’s Axiom. For every $\kappa < 2^{\omega}$, \mathcal{B} is weakly (κ, ∞)-distributive.

Corollary 18

The statement that:

For every \mathcal{B} and uncountable κ, \mathcal{B} is weakly (κ, ∞)-distributive if and only if ONE does not have a winning strategy in $\mathcal{G}_{<\omega}^\kappa$ on \mathcal{B},

is independent from ZFC.
Fact 17 (Folklore)

Let \mathcal{B} be the random algebra.

1. \mathcal{B} is not (ω, ∞)-distributive.

2. Suppose Martin’s Axiom. For every $\kappa < 2^\omega$, \mathcal{B} is weakly (κ, ∞)-distributive.

Corollary 18

The statement that:

For every \mathcal{B} and uncountable κ, \mathcal{B} is weakly (κ, ∞)-distributive if and only if ONE does not have a winning strategy in $\mathcal{G}_{\leq \omega}^\kappa$ on \mathcal{B},

is independent from ZFC.
Proposition 19

Let μ be a regular cardinal, and $\kappa > \mu$. Suppose B is (μ, ∞)-distributive. Then the following are equivalent:

1. ONE does not have a winning strategy in $G^\kappa_{<\mu}$ on B, and for every μ-Suslin tree, $\Vdash_{B^+} \text{"}T \text{ does not have a cofinal branch".}$

2. B is (κ, ∞)-distributive.
When $\kappa = \mu = \omega_1$

Proposition 20

Suppose Proper Forcing Axiom. Then for every cBa \mathcal{B}, if \mathcal{B} is (ω, ∞)-distributive and ONE does not have a winning strategy in $\mathcal{G}_{<\omega_1}^{\omega_1}$ on \mathcal{B}, then \mathcal{B} is (ω_1, ∞)-distributive.

In particular, if \mathcal{B} is (ω, ∞)-distributive, then the following are equivalent for $\kappa \geq \omega_1$:

1. \mathcal{B} is (κ, ∞)-distributive.
2. ONE does not have a winning strategy in $\mathcal{G}_{<\omega_1}^{\kappa}$ on \mathcal{B}.
Question 21

1. How about the weak \((\kappa, \lambda)\)-distributivity and the game \(G^\kappa_{<\omega}(\lambda)\)?

2. More generally, how about the \((\kappa, \lambda, < \mu)\)-distributivity and \(G^\kappa_{<\mu}(\lambda)\)?

Thank you for your attention!
Question 21

1. How about the weak (κ, λ)-distributivity and the game $G^\kappa_{<\omega}(\lambda)$?

2. More generally, how about the $(\kappa, \lambda, < \mu)$-distributivity and $G^\kappa_{<\mu}(\lambda)$?

Thank you for your attention!