Invariant Theory and Hochschild Cohomology of Skew Group Algebras

Briana Foster-Greenwood

UNT

April 23, 2011

In Hochschild Cohomology and Associative Deformations

e Hochschild Cohomology of Skew Group Algebras

Olassical invariant theory tools

Hochschild Cohomology and Associative Deformations

-

• • • • • • • • • • • •

Deformations of algebras

```
Start with an associative \mathbb{F}-algebra: A
```

```
Adjoin a central parameter: A[t]
(this will be underlying vector space structure)
```

Define a new multiplication: $a * b = ab + \mu_1(a, b)t + \mu_2(a, b)t^2 + \cdots$ (first define for pairs of elements in *A*; then extend $\mathbb{F}[t]$ -bilinearly)

```
Specialize to t \in \mathbb{F} to get many algebras
t = 0 \rightarrow original algebra
t = 1 \rightarrow ???
```

Hochschild cohomology and associative deformations

 $A \stackrel{\text{deform}}{\leadsto} A[t]$ with multiplication $a * b = ab + \mu_1(a, b)t + \mu_2(a, b)t^2 + \cdots$

- picking any old μ_k 's will not usually yield an **associative** algebra
- to even get started, μ_1 must be a Hochschild 2-cocycle:

$$a\mu_1(b,c)-\mu_1(ab,c)+\mu_1(a,bc)-\mu_1(a,b)c=0$$

What is Hochschild cohomology?

Hochschild cohomology of an algebra A

- 1-maps: $A \rightarrow A$
- 2-maps: $A \otimes A \rightarrow A$
- 3-maps: $A \otimes A \otimes A \rightarrow A$

• $HH^{k}(A)$ =equivalence classes of k-maps satisfying cocycle conditions

$$HH^{0}(A) = \text{center of } A$$

$$HH^{1}(A) = \frac{\text{derivations}}{\text{inner derivations}} (\text{can use to construct some 2-cocycles!})$$

$$HH^{2}(A) \supset \text{ first multiplication maps of deformations}$$

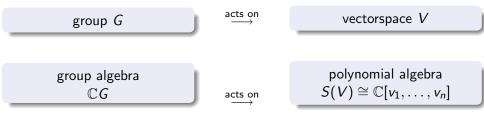
$$HH^{3}(A) \supset \text{ "obstructions" to obtaining associative deformations}$$

Hochschild Cohomology of Skew Group Algebras

-

• • • • • • • • • • • •

Skew group algebras



Skew group algebra S(V) # G

Elements: \mathbb{C} -linear combos of monomials $v_1^{e_1} \cdots v_n^{e_n} \mathbf{g}$

Relations:

• vw - wv = 0

- group elements multiply as in group
- $\mathbf{g}v = \vec{g}(v)\mathbf{g}$

・ロン ・四 ・ ・ ヨン ・ ヨン

 $HH^0(S(V) \# G)$ - Invariant polynomials

The center of a skew group algebra is the set of G-invariant polynomials:

$$S(V)^G = \{f \in S(V) \ : \ ec{g}(f) = f ext{ for all } g \in G\}$$

Example - Sym₃ acts on $\mathbb{C}[x, y, z]$ by permuting the variables

elementary symmetric polynomials

$$f_1 = x + y + z$$

$$f_2 = yz + xz + xy$$

$$f_3 = xyz$$

• use these to build more: e.g. $3f_1^5 - 7f_2f_3$ is also invariant

• How many invariant polynomials are there?

$HH^1(S(V) \# G)$ - Invariant derivations

$$\operatorname{HH}^1(S(V)\#G)\cong \{ ext{invariant derivations on } S(V)\}$$

Example - Sym₃ also permutes the "dual vectors" ∂_x , ∂_y , ∂_z

• a few invariant derivations

$$\begin{aligned} \theta_0 &= \partial_x + \partial_y + \partial_z \\ \theta_1 &= x\partial_x + y\partial_y + z\partial_z \\ \theta_2 &= yz\partial_x + xz\partial_y + xy\partial_z \end{aligned}$$

• build more by multiplying by invariant polynomials:

$$f_3\theta_2 = xy^2z^2\partial_x + x^2yz^2\partial_y + x^2y^2z\partial_z$$

• How many invariant derivations are there?

Big invariant theory description of HH(S(V)#G)

Theorem (Ginzburg-Kaledin, Farinati)

$$HH^k(S(V)\#G)\cong (S(V)\otimes \bigwedge^k V^*)^G\oplus more!$$

The remaining summands are spaces of semi-invariants under centralizer subgroups:

$$\left(S(V^g)\otimes \bigwedge^{k-c}(V^g)^*\otimes \mathbb{C}_\chi
ight)^{Z(g)}$$

(one summand per conjugacy class)

Classical invariant theory tools

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Graded vector spaces and Poincaré series

Start with a graded vector space:

$$S = igoplus_{d \ge 0} S_d$$
 (with $S_d S_e \subset S_{d+e}$)

The Poincaré series for S is a power series with the coefficient of t^d recording the dimension of S_d :

$$P_t(S) = \sum_{d \ge 0} (\dim_{\mathbb{C}} S_d) t^d$$

Poincaré series for $\mathbb{C}[f_1, f_2, f_3] \subset \mathbb{C}[x, y, z]^{\mathsf{Sym}_3}$

$$f_1 = x + y + z$$
, $f_2 = yz + xz + xy$, $f_3 = xyz$

Build more polynomials \rightarrow

Note: f_1 , f_2 , f_3 are algebraically independent, which forces all these new polynomials to be linearly independent.

degree	polynomials	
0	1	
1	f_1	
2	f_1^2, f_2	
3	f_1^3 , f_1f_2 , f_3	
:	:	

$$P_t(\mathbb{C}[f_1, f_2, f_3]) = 1 + t + 2t^2 + 3t^3 + \cdots$$

= $(1 + t + t^2 + \cdots)(1 + t^2 + t^4 + \cdots)(1 + t^3 + t^6 + \cdots)$
= $\frac{1}{(1 - t)(1 - t^2)(1 - t^3)}$

Molien's theorem (1897)

Poincaré series for ring of invariant polynomials

Poincaré series for
$$S^G$$

 $P_t(S^G) = \frac{1}{|G|} \sum_{g \in G} \frac{1}{\det(1 - gt)}$

det(1 - gt) is the characteristic polynomial for the matrix of g.

Poincaré series for $\mathbb{C}[x, y, z]^{Sym_3}$

elements	eigenvalues	characteristic polynomial
1	1, 1, 1	$(1-t)^{3}$
(12), (13), (23)	1, 1, -1	$(1-t)^2(1+t)$
(123), (321)	1, ω , ω^2	$(1-t)(1-\omega t)(1-\omega^2 t)$

$$P_t(S^G) = \frac{1}{6} \left[\frac{1}{(1-t)^3} + \frac{3}{(1-t)^2(1+t)} + \frac{2}{(1-t^3)} \right]$$
$$= \frac{1}{(1-t)(1-t^2)(1-t^3)}$$

By comparing Poincaré series: $\mathbb{C}[f_1, f_2, f_3] = \mathbb{C}[x, y, z]^{Sym_3}$

Briana Foster-Greenwood (UNT)

Invariant Theory and HH(S(V)#G)

・ロン ・聞と ・ ヨン ・ ヨン

Big invariant theory description of HH(S(V)#G)

Theorem (Ginzburg-Kaledin, Farinati)

$$HH^k(S(V)\#G)\cong (S(V)\otimes \bigwedge^k V^*)^G\oplus more!$$

The remaining summands are spaces of semi-invariants under centralizer subgroups:

$$\left(S(V^g)\otimes \bigwedge^{k-c}(V^g)^*\otimes \mathbb{C}_\chi
ight)^{Z(g)}$$

(one summand per conjugacy class)

Generalizations of Molien's theorem

Tensoring with an exterior algebra

Poincaré series for $(S(V) \otimes \bigwedge V^*)^G$

$$P_{X,Y} = \frac{1}{|G|} \sum_{g \in G} \frac{\det(1 + g^*Y)}{\det(1 - gX)}$$

The coefficient of $X^i Y^j$ tells you the dimension of $(S_i(V) \otimes \bigwedge^j V^*)^G$.

More generally, the Poincaré series for $(S(V) \otimes \bigwedge V^* \otimes \mathbb{C}_{\chi})^G$ is

$$P_{X,Y} = \frac{1}{|G|} \sum_{g \in G} \frac{\chi^*(g) \det(1 + g^*Y)}{\det(1 - gX)}$$

Predictive power of Poincaré

Module structure for identity component of $HH(S(V)#Alt_4)$

Let $G = Alt_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^{6}}{(1-x^{2})(1-x^{3})(1-x^{4})} + \frac{x+x^{2}+2x^{3}+x^{4}+x^{5}}{(1-x^{2})(1-x^{3})(1-x^{4})}y + \frac{x+x^{2}+2x^{3}+x^{4}+x^{5}}{(1-x^{2})(1-x^{3})(1-x^{4})}y^{2} + \frac{1+x^{6}}{(1-x^{2})(1-x^{3})(1-x^{4})}y^{3}$$

invariant polynomials

invariant derivations

invariant 2-forms

invariant 3-forms

Read off finitely-generated free module structure:

• denominators \rightsquigarrow free module over $R = \mathbb{C}[f_2, f_3, f_4]$

where f_2 , f_3 , f_4 are algebraically independent invariant polynomials of degrees 2, 3, 4

• numerators ~> how many generators? polynomial degree?

Predictive power of Poincaré

Module structure for identity component of $HH(S(V)#Alt_4)$

Let $G = Alt_4$ act irreducibly on $V \cong \mathbb{C}^3$.

Poincaré series for identity component of HH(S(V)#G):

$$\frac{1+x^{6}}{(1-x^{2})(1-x^{3})(1-x^{4})} + \frac{x+x^{2}+2x^{3}+x^{4}+x^{5}}{(1-x^{2})(1-x^{3})(1-x^{4})}y + \frac{x+x^{2}+2x^{3}+x^{4}+x^{5}}{(1-x^{2})(1-x^{3})(1-x^{4})}y^{2} + \frac{1+x^{6}}{(1-x^{2})(1-x^{3})(1-x^{4})}y^{3}$$

invariant polynomials invariant derivations invariant 2-forms invariant 3-forms

Invariant derivations:

- the invariant derivations are the free *R*-span of six derivations of polynomial degrees 1, 2, 3, 3, 4, 5
- it is now a finite linear algebra problem to find all invariant derivations

• • = • • = •

Thanks!

▲口> ▲圖> ▲屋> ▲屋>