Cohomology of Hopf Algebras

Van Nguyen

Texas A&M University Workshop on Algebras at UNT

April 23, 2011

イロト イヨト イヨト イヨト

æ

Motivation

- Homological algebra has a large number of applications in many different fields
- Hopf algebra structure
- The finite generation of the cohomology of Hopf algebra makes it easier to compute and able to apply algebraic geometry/commutative algebra in the study

Image: A matrix

Bialgebra

Definition

A bialgebra over a field k is a k-vector space B endowed with algebra and coalgebra structures:

an algebra structure:

 $m: B \otimes B \to B$ $u: k \to B$

satisfying:

•
$$m \circ (m \otimes id) = m \circ (id \otimes m)$$

•
$$m \circ (u \otimes id) = 1_k . id_B$$

•
$$m \circ (id \otimes u) = id_B.1_k$$

・ロト ・回ト ・ヨト ・ヨト

Bialgebra

Definition

A bialgebra over a field k is a k-vector space B endowed with algebra and coalgebra structures:

a coalgebra structure:

 $\Delta: B \to B \otimes B \qquad \varepsilon: B \to k$

satisfying:

•
$$(\mathit{id}\otimes\Delta)\circ\Delta=(\Delta\otimes\mathit{id})\circ\Delta$$

•
$$(\mathit{id}\otimes \varepsilon)\circ \Delta = \mathit{id}_B\otimes 1_k$$

•
$$(\varepsilon \otimes id) \circ \Delta = 1_k \otimes id_B$$

Notation: $\Delta(b) = \sum b_1 \otimes b_2, \forall b \in B$.

イロン イヨン イヨン イヨン

Bialgebra

Definition

A bialgebra over a field k is a k-vector space B endowed with algebra and coalgebra structures: such that either (Δ and ε are algebra morphisms) OR (m and u are coalgebra morphisms).

<ロ> <同> <同> <同> < 同>

(Co)commutativity

- An algebra (B, m, u) is said to be commutative if ab = ba, ∀a, b ∈ B.
- A coalgebra (B, Δ, ε) is called cocommutative if ∑ b₁ ⊗ b₂ = ∑ b₂ ⊗ b₁, ∀b_i ∈ B.

イロン イヨン イヨン イヨン

Hopf Algebra

Definition

A Hopf algebra is a bialgebra H with a linear map $S : H \to H$, such that $\forall h \in H$:

$$\sum S(h_1) h_2 = \varepsilon(h) \mathbb{1}_H = \sum h_1 S(h_2)$$

The map S is called the antipode of H.

イロン イヨン イヨン イヨン

Chain Complex

Definition

Let *R* be a ring. A chain complex $\{C_{\bullet}, d\} = \{C_n, d_n : C_n \to C_{n-1}\}$ is a family of *R*-modules C_n and R-module homomorphisms d_n :

$$\cdots \to C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} \cdots$$

such that $d_n \circ d_{n+1} = 0, \forall n \in \mathbb{Z}$.

Definition

The nth homology of the complex $\{C_n, d_n\}$ is the quotient

$$H_n(C_{\bullet}) = Ker(d_n)/Im(d_{n+1})$$

・ロト ・日本 ・モート ・モート

Cochain Complex

Definition

Let *R* be a ring. A cochain complex is a family $\{C_{\bullet}, d\} = \{C^n, d^n : C^n \to C^{n+1}\}$:

$$\cdots \leftarrow C^{n+1} \xleftarrow{d^n} C^n \xleftarrow{d^{n-1}} C^{n-1} \xleftarrow{d^{n-2}} \cdots$$

such that $d^n \circ d^{n-1} = 0, \forall n \in \mathbb{Z}$.

Definition

The nth cohomology of the cochain complex $\{C^n, d^n\}$ is the quotient

$$H^n(C\bullet) = Ker(d^n)/Im(d^{n-1})$$

・ロン ・回と ・ヨン ・ヨン

Projective resolution

Definition

Let $B \in_R \mathcal{M}$, a projective resolution of B, denoted by $P_{\bullet} = \{P_n, d_n\}$, is an exact sequence of R-projective modules

$$\cdots \to P_{n+1} \xrightarrow{d_{n+1}} P_n \xrightarrow{d_n} \cdots \xrightarrow{d_1} P_0 \xrightarrow{\varepsilon} B \to 0$$

Recursively, choose P_0 projective and $\varepsilon : P_0 \to B$ surjective map Choose P_1 projective and $\varepsilon_1 : P_1 \to Ker(\varepsilon)$ surjective map Choose P_2 projective and $\varepsilon_2 : P_2 \to Ker(\varepsilon_1)$ surjective map etc.

Let $d_n = \iota_n \circ \varepsilon_n$, where $\iota : Ker(\varepsilon_n) \hookrightarrow P_{n-1}$ is inclusion map. Since $Im(d_n) = Ker(d_{n-1})$, by this way, for any left *R*-module *B*, we can construct a projective resolution of *B*.

(日) (同) (E) (E) (E)

Ext

Definition

*Ext*_R^{*}: Let $C \in_R \mathcal{M}$, apply $Hom_R(-, C)$ to projective resolution P_{\bullet} of B and drop the last term $Hom_R(B, C)$, we get: $0 \xrightarrow{0} Hom(P_0, C) \xrightarrow{d_1^*} Hom(P_1, C) \to \cdots \to Hom(P_n, C) \xrightarrow{d_n^*} Hom(P_{n+1}, C) \to \cdots$ where $d_i^*(f) = f \circ d_i, i \neq 0$. The nth homology of this complex is isomorphic to

$$\operatorname{Ext}^n_R(B,C)\cong \operatorname{H}_n(\operatorname{Hom}_R(P_ullet,C))=\operatorname{Ker}(d^*_{n+1})/\operatorname{Im}(d^*_n)$$

イロン イ部ン イヨン イヨン 三日

Augmented Algebra

Definition

An augmented algebra over a commutative ring k is a k-algebra A together with an algebra homomorphism $\varepsilon : A \to k$.

Example

$$A = k[x_1, x_2, \dots, x_n], \text{ where } k \text{ is a field}$$

$$\varepsilon(x_i) = 0, \forall i \qquad \varepsilon(r) = r, \forall r \in k.$$

$$k \text{ is an } A\text{-module via } \varepsilon, \text{ i.e. for } a \in A, r \in k, \text{ then } r.a = \varepsilon(a)r.$$

$$\text{Let } M \in_A \mathcal{M} : \qquad H^n(A, M) = \text{Ext}_A^n(k, M)$$

$$H^*(A, M) = \bigoplus H^n(A, M) = \bigoplus \text{Ext}_A^n(k, M)$$

n>0

n>0

ロト・日子・・ヨー

Special case: M = k, $H^*(A, k)$ turns out to be a (graded) algebra under a cup product.

Example

In particular, let A = k[x]. Consider k to be an A-module on which x acts as multiplication by 0. Let $\varepsilon : A \to k$ be evaluation at 0, i.e. $f(x) \mapsto f(0)$. Consider projective resolution of k:

$$0 \to A \xrightarrow{.x} A \xrightarrow{\varepsilon} k \to 0$$

Apply $Hom_A(-, k)$ and delete the term $Hom_A(k, k)$, we get:

$$0 \to Hom_{\mathcal{A}}(\mathcal{A}, k) \xrightarrow{(.x)^*} Hom_{\mathcal{A}}(\mathcal{A}, k) \to 0$$

which is equivalent to

$$0 o k \xrightarrow{0} k o 0$$

since $Hom_A(A, k) \cong k$. Thus:

$$Ext_{A}^{n}(k,k) = \begin{cases} k & n = 0, 1 \\ 0 & \forall n \ge 2 \end{cases}$$

・ロト ・回ト ・ヨト ・ヨト

3

Let A = k[x, y]: Note that $k \cong A/(x, y)$. Consider k to be an A-module via the quotient map (i.e. x, y act as 0 on elements of k. Consider projective resolution of k:

$$0 \to A \xrightarrow{\alpha} A \oplus A \xrightarrow{\beta} A \xrightarrow{\varepsilon} k \to 0$$

where $\alpha = \begin{pmatrix} y \\ -x \end{pmatrix}$, and $\beta = \begin{pmatrix} x & y \end{pmatrix}$. Similar computation as before, we get:

$$Ext_A^n(k,k) = \begin{cases} k \oplus k & n = 1 \\ k & n = 0,2 \\ 0 & \forall n > 2 \end{cases}$$

Note: A = k[x, y] is a Hopf algebra via:

$$\Delta(x) = x \otimes 1 + 1 \otimes x$$

$$\Delta(y) = y \otimes 1 + 1 \otimes y$$

 $Ext^*_A(k, k)$ is graded commutative, i.e. $ab = (-1)^{deg(a)deg(b)}ba$. We showed above that $Ext^*_A(k, k) \cong \Lambda(V)$, where V is a vector of dimension 2.

<ロ> (日) (日) (日) (日) (日)

In general, let $A = k[x_1, x_2, \dots, x_n]$, we get:

$$Ext_A^i(k,k) \cong k^{\binom{n}{i}}, \forall i \ge 0$$

so

$$H^*(A,k) = Ext^*_A(k,k) = \bigoplus_{i \ge 0} Ext^i_A(k,k) \cong \bigoplus_{i \ge 0} k^{\binom{n}{i}} \cong \Lambda^*(V)$$

where V is a vector space of dimension n.

・ロト ・回ト ・ヨト ・ヨト

æ

Group algebra

Let *G* be a (multiplicative) group and *k* is a field, then $kG = \{\sum_{g \in G} a_g g: a_g \in k\}$ is the associated group algebra. *kG* is a Hopf algebra:

•
$$\left(\sum_{g \in G} a_g g\right) \cdot \left(\sum_{h \in G} b_h h\right) = \sum_{g,h \in G} (a_g b_h)(gh)$$

 $\forall a_g, b_h \in k; \forall g, h \in G.$

•
$$\Delta(g) = g \otimes g$$
, and $\varepsilon(g) = 1, \forall g \in G$.

• since every $g \in G$ is invertible, define the antipode $S \in Hom_k(kG, kG)$ by $S(g) = g^{-1}$,

イロン イヨン イヨン イヨン

Cohomology of finite groups

Notation: the group cohomology

$$H^*(kG, M) = H^*(G, M) = \bigoplus_{n \ge 0} Ext_{kG}^n(k, M)$$

Common example: M = k, look at $H^*(G, k)$.

Example

Let $G = \langle g \rangle$, cyclic group of order *m*. *kG*-projective resolution:

$$\ldots \xrightarrow{\cdot T} kG \xrightarrow{\cdot (g-1)} kG \xrightarrow{\cdot T} kG \xrightarrow{\cdot (g-1)} kG \xrightarrow{\varepsilon} k \to 0$$

where $T = 1 + g + g^2 + g^3 + ... + g^{m-1}$ $\varepsilon(g^i) = 1, \forall g^i \in G$ $\varepsilon(1 - g^i) = 0, \forall g^i \in G$

Case 1: k is a field, $char(k) \mid m$

$$H^n(G,k)\cong k, \forall n\geq 0$$

Case 2: k is a field, $char(k) \nmid m$

$$H^n(G,k) = \begin{cases} k & n=0\\ 0 & \forall n>0 \end{cases}$$

Case 3: $k = \mathbb{Z}$

$$H^{n}(G,\mathbb{Z}) = \begin{cases} \mathbb{Z} & n = 0\\ \mathbb{Z}/(m\mathbb{Z}) & n > 0, n \text{ is even} \\ 0 & n > 0, n \text{ is odd} \end{cases}$$

・ロン ・回と ・ヨン・

Э

Theorem (Golod '59, Venkov '59, Evens '61)

If G is a finite group and k is a field of positive characteristic , then $H^*(G, k)$ is finitely generated as k-algebra.

And it's also graded commutative since kG is a Hopf algebra.

イロト イヨト イヨト イヨト

Theorem (Friedlander-Suslin '97)

If G is a finite group scheme and k is a field of positive characteristic, then $H^*(G, k)$ is finitely generated.

Equivalently,

Theorem

If R is a finite dimensional cocommutative Hopf algebra, then $H^*(R, k)$ is finitely generated.

イロト イヨト イヨト イヨト

Theorem (Ginzburg-Kumar '93, Bendel-Nakano-Parshall-Pillen '07)

The cohomology ring of finite dimensional (Lusztig's) small quantum group $u_q(\mathfrak{g})$ over \mathbb{C} is finitely generated.

Theorem (Mastnak-Pevtsova-Schauenburg-Witherspoon '10)

More generally, if H is finite dimensional "pointed" Hopf algebra (under some assumptions), then $H^*(H, k)$ is finitely generated.

・ロト ・日本 ・モート ・モート

Conjecture: The cohomology ring of a finite dimensional Hopf algebra, $H^*(H, k)$, is finitely generated.

OPEN QUESTION!

イロン イヨン イヨン イヨン

æ

Reference

- E 1991 Evens, Leonard, *The cohomology of groups*, Oxford University Press, New York, 1991.
- M 1993 Montgomery, Susan, *Hopf algebras and their actions on rings*, Vol. 82 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1993.
- MPSW10 M. Mastnak, J. Pevtsova, P. Schauenburg and S. Witherspoon. Cohomology of finite-dimensional pointed Hopf algebras, Proc. London Math. Soc., 100, pp. 377-404, 2010.
 - O 2000 Osborne, M. Scott, *Basic homological algebra*, (Graduate Text in Mathematics), Springer-Verlag, New York, 2000.

イロン イヨン イヨン イヨン

Thank You!

・ロン ・雪 と ・ ヨ と ・ ヨ と

æ