Universal Deformation Formulas

Jeanette Shakalli
Department of Mathematics
Texas A\&M University
April 23, 2011

Outline

Preliminaries

Universal Deformation Formulas

Outline

Preliminaries

Algebra

An algebra is a \mathbb{C}-vector space A together with two \mathbb{C}-linear maps:

- multiplication $m: A \otimes A \rightarrow A$
- unit $u: \mathbb{C} \rightarrow A$
s.t.
a) associativity
b) unit

Coalgebra

A coalgebra is a \mathbb{C}-vector space C together with two \mathbb{C}-linear maps:

- comultiplication $\Delta: C \rightarrow C \otimes C$
- counit $\varepsilon: C \rightarrow \mathbb{C}$
s.t.
a) coassociativity

b) counit

Bialgebra

Let B be a \mathbb{C}-vector space. We say that $(B, m, u, \Delta, \varepsilon)$ is a bialgebra if

- (B, m, u) is an algebra
- (B, Δ, ε) is a coalgebra
- Δ and ε are algebra maps

Notation
The sigma notation for Δ is given by

$$
\Delta(b)=\sum b_{1} \otimes b_{2}
$$

for all $b \in B$.

Hopf Algebra

A Hopf algebra is a bialgebra $(H, m, u, \Delta, \varepsilon)$ with a \mathbb{C}-linear map

$$
S: H \rightarrow H
$$

such that

$$
\sum S\left(h_{1}\right) h_{2}=\varepsilon(h) 1_{H}=\sum h_{1} S\left(h_{2}\right)
$$

for all $h \in H$.
The map S is called the antipode of H.

Module Algebra

Let A be an algebra and B a bialgebra. Suppose A is a left B-module via

$$
\begin{aligned}
\rho: B & \otimes A \rightarrow A \\
\quad & \otimes x \mapsto b(x)
\end{aligned}
$$

for $x \in A, b \in B$. Then A is a left B-module algebra if

$$
\begin{aligned}
& b(x y)=\sum b_{1}(x) b_{2}(y) \\
& b\left(1_{A}\right)=\varepsilon(b) 1_{A}
\end{aligned}
$$

for all $x, y \in A, b \in B$.

Outline

Preliminaries

Universal Deformation Formulas

Formal Deformation

Let t be an indeterminate. A formal deformation of an algebra A is an associative algebra $A[[t]]$ over the formal power series $\mathbb{C}[[t]]$ with multiplication

$$
a * b=a b+\mu_{1}(a \otimes b) t+\mu_{2}(a \otimes b) t^{2}+\cdots
$$

for all $a, b \in A$, where

- $a b$ is the multiplication in A
- $\mu_{i}: A \otimes A \rightarrow A$ are \mathbb{C}-linear maps extended to be $\mathbb{C}[[t]]$-linear

Module Algebra

Recall: A is a left B-module algebra if

$$
\begin{aligned}
& b(x y)=\sum b_{1}(x) b_{2}(y) \\
& b\left(1_{A}\right)=\varepsilon(b) 1_{A}
\end{aligned}
$$

for all $x, y \in A, b \in B$.
We may extend this \mathbb{C}-linear action of B to a $\mathbb{C}[[t]]$-linear action of $B[[t]]$.

Universal Deformation Formula

A universal deformation formula based on a bialgebra B is an element $F \in(B \otimes B)[[t]]$ of the form

$$
F=1_{B} \otimes 1_{B}+t F_{1}+t^{2} F_{2}+\ldots
$$

with $F_{i} \in B \otimes B$, satisfying

$$
(\varepsilon \otimes \mathrm{id})(F)=1 \otimes 1_{B} \quad(\mathrm{id} \otimes \varepsilon)(F)=1_{B} \otimes 1
$$

and

$$
[(\Delta \otimes \mathrm{id})(F)]\left(F \otimes 1_{B}\right)=[(\mathrm{id} \otimes \Delta)(F)]\left(1_{B} \otimes F\right)
$$

Giaquinto and Zhang (1998)

Let A be an algebra and B a bialgebra. Let $m: A \otimes A \rightarrow A$ be the multiplication of A, extended to be $\mathbb{C}[[t]]$-linear.

Proposition
If A is a left B-module algebra and F a universal deformation
formula based on B, then there is a formal deformation of A given by

$$
a * b=(m \circ F)(a \otimes b)
$$

for all $a, b \in A$.
F is universal in the sense that it applies to any B-module algebra to yield a formal deformation.

The Hopf Algebra H_{q}

Let $q \in \mathbb{C}^{\times}$and let H be the algebra generated by
$D_{1}, D_{2}, \sigma, \sigma^{-1}$
subject to the relations

$$
\begin{aligned}
D_{1} D_{2} & =D_{2} D_{1} \\
\sigma D_{1} & =q^{-1} D_{1} \sigma \\
\sigma D_{2} & =q^{-1} D_{2} \sigma \\
\sigma \sigma^{-1} & =\sigma^{-1} \sigma=1_{H}
\end{aligned}
$$

The Hopf Algebra H_{q}

Then H is a Hopf algebra with

$$
\left.\begin{array}{cc}
\Delta\left(D_{1}\right)=D_{1} \otimes \sigma+1_{H} \otimes D_{1} \\
\Delta\left(D_{2}\right)=D_{2} \otimes 1_{H}+\sigma \otimes D_{2} \\
\Delta(\sigma)=\sigma \otimes \sigma
\end{array}\right] \begin{array}{rr}
\varepsilon\left(D_{1}\right)=0 & S\left(D_{1}\right)=-D_{1} \sigma^{-1} \\
\varepsilon\left(D_{2}\right)=0 & S\left(D_{2}\right)=-\sigma^{-1} D_{2} \\
\varepsilon(\sigma)=1 & S(\sigma)=\sigma^{-1}
\end{array}
$$

The Hopf Algebra H_{q}

If q is a primitive nth root of unity ($n \geq 2$), then the ideal \mathcal{I} generated by D_{1}^{n} and D_{2}^{n} is a Hopf ideal, that is

$$
\begin{aligned}
\Delta(\mathcal{I}) & \subseteq \mathcal{I} \otimes H+H \otimes \mathcal{I} \\
\varepsilon(\mathcal{I}) & =0 \\
S(\mathcal{I}) & \subseteq \mathcal{I}
\end{aligned}
$$

Thus, the quotient H / \mathcal{I} is also a Hopf algebra.
Define

$$
H_{q}= \begin{cases}H / \mathcal{I}, & \text { if } q \text { is a primitive } n \text {th root of unity }(n \geq 2) \\ H, & \text { if } q=1 \text { or is not a root of unity }\end{cases}
$$

The q-exponential function
Let A be an algebra.
If $q=1$ or is not a root of unity, the q-exponential function is given by

$$
\exp _{q}(y)=\sum_{i=0}^{\infty} \frac{1}{(i)_{q}!} y^{i} \quad \text { for } y \in A \text {. }
$$

If q is a primitive nth root of unity $(n \geq 2)$, the q-exponential function is given by

$$
\exp _{q}(y)=\sum_{i=0}^{n-1} \frac{1}{(i)_{q}!} y^{i} \quad \text { for } y \in A
$$

Notation

$$
\begin{aligned}
& (i)_{q}=1+q+q^{2}+\cdots+q^{i-1} \text { with }(0)_{q}=0 \\
& (i)_{q}!=(i)_{q}(i-1)_{q} \cdots(1)_{q} \text { with }(0)_{q}!=1
\end{aligned}
$$

Witherspoon (2006)

Theorem
Let $q \in \mathbb{C}^{\times}$. Then

$$
\exp _{q}\left(t D_{1} \otimes D_{2}\right)
$$

is a universal deformation formula based on H_{q}.
Corollary
For every H_{q}-module algebra A,

$$
m \circ \exp _{q}\left(t D_{1} \otimes D_{2}\right)
$$

gives a formal deformation of A.

Example (Taft Algebra)

Let A be the algebra generated by a, b, x, y subject to the relations

$$
\begin{array}{rlr}
a^{2}=a & b^{2}=b \\
a b & =0 & b a=0 \\
x^{2} & =0 & y^{2}=0 \\
x y & =0 & y x=0 \\
a x & =0 & b y=0 \\
a y & =y & b x=x \\
x a & =x & y b=y \\
x b & =0 & y a=0 \\
a+b & =1_{A} &
\end{array}
$$

Example (Taft Algebra)

Let $q=-1$. Then H_{-1} is generated by

$$
D_{1}, D_{2}, \sigma, \sigma^{-1}
$$

subject to the relations

$$
\begin{aligned}
D_{1} D_{2} & =D_{2} D_{1} \\
-\sigma D_{1} & =D_{1} \sigma \\
-\sigma D_{2} & =D_{2} \sigma \\
\sigma \sigma^{-1} & =\sigma^{-1} \sigma=1_{H} \\
D_{1}^{2} & =0 \\
D_{2}^{2} & =0
\end{aligned}
$$

Example (Taft Algebra)

Define an action of H_{-1} on the generators of A by

$$
\begin{aligned}
D_{1}(a) & =0 & D_{1}(b) & =0 \\
D_{2}(a) & =0 & D_{2}(b) & =0 \\
\sigma(a) & =b & \sigma(b) & =a \\
D_{1}(x) & =b & D_{1}(y) & =a \\
D_{2}(x) & =a & D_{2}(y) & =b \\
\sigma(x) & =-y & \sigma(y) & =-x
\end{aligned}
$$

Extend this action to all of A under the conditions

$$
\begin{aligned}
D_{1}(f g) & =D_{1}(f) \sigma(g)+f D_{1}(g) \\
D_{2}(f g) & =D_{2}(f) g+\sigma(f) D_{2}(g) \\
\sigma(f g) & =\sigma(f) \sigma(g)
\end{aligned}
$$

for all $f, g \in A$.

Example (Taft Algebra)

A is an H_{-1}-module algebra:

- the relations of H_{-1} are preserved by the generators of A :

Example
Check that $D_{1} D_{2}=D_{2} D_{1}$ is preserved by x :

$$
D_{1} D_{2}(x)=D_{1}(a)=0=D_{2}(b)=D_{2} D_{1}(x) .
$$

- the relations of A are preserved by the generators of H_{-1} :

Example
Check that $x y=0$ is preserved by D_{1} :

$$
D_{1}(x y)=D_{1}(x) \sigma(y)+x D_{1}(y)=-b x+x a=-x+x=0 .
$$

Example (Taft Algebra)

Since A is an H_{-1}-module algebra, by Corollary, we have that

$$
\begin{aligned}
m \circ \exp _{q}\left(t D_{1} \otimes D_{2}\right) & =m \circ\left(\sum_{i=0}^{n-1} \frac{1}{(i)_{q}!}\left(t D_{1} \otimes D_{2}\right)^{i}\right) \\
& =m \circ\left(1+t D_{1} \otimes D_{2}\right)
\end{aligned}
$$

yields a formal deformation of A.
Recall: a formal deformation of A has multiplication given by

$$
a * b=a b+\mu_{1}(a \otimes b) t+\mu_{2}(a \otimes b) t^{2}+\cdots
$$

for all $a, b \in A$.
In this case, $\mu_{1}=m \circ\left(D_{1} \otimes D_{2}\right)$ and $\mu_{j}=0$ for all $j \geq 2$.

Example (Taft Algebra)

To find the new relations in the deformed algebra $A[[t]]$, consider

$$
\begin{aligned}
x * y & =\left(m \circ\left(1+t D_{1} \otimes D_{2}\right)\right)(x \otimes y) \\
& =m(x \otimes y)+m\left(\left(t D_{1} \otimes D_{2}\right)(x \otimes y)\right) \\
& =x y+m\left(t D_{1}(x) \otimes D_{2}(y)\right) \\
& =x y+m(t b \otimes b) \\
& =x y+t b^{2} \\
& =t b
\end{aligned}
$$

Similarly, $y * x=y x+t a^{2}=t a$.

Example (Taft Algebra)

The deformation of A is generated by a, b, x, y subject to the new relations

$$
\begin{array}{rlrl}
a^{2} & =a & b^{2}=b \\
a b & =0 & b a & =0 \\
x^{2} & =0 & y^{2}=0 \\
x y & =t b & y x & =t a \\
a x & =0 & b y & =0 \\
a y & =y & b x & =x \\
x a & =x & y b & =y \\
x b & =0 & y a & =0 \\
a+b & =1_{A} & &
\end{array}
$$

Thank you!!!

