Cohomology of Quotients of Quantum Symmetric Algebras

Piyush Shroff

Texas A&M University UNT and TAMU Workshop on Algebras

April 23, 2011

Piyush Shroff Cohomology of Quotients of Quantum Symmetric Algebras

(不同) とうき くうう

Outline

Introduction

6 Reference

æ

Let *B* be a PBW algebra generated by $x_1, \dots, x_{\theta}, \dots, x_n$ and $A = B/(x_1^{N_1}, \dots, x_{\theta}^{N_{\theta}})$. To show $H^*(A, k) = Ext_A^*(k, k)$ is finitely generated. **Notation:** $H^r(A, k) = Ext_A^r(k, k)$ and $H^*(A, k) = \bigoplus_{r>0} H^r(A, k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

So let us ask the question. Is $H^*(A, k)$ finitely generated?

- M. Mastnak, J. Pevtsova, P. Schauenburg and S. Witherspoon in 2010 proved for nilpotent generators.
- V. Ginzburg and S. Kumar in 1993 proved for non-nilpotent generators in case for quantum groups at roots of unity.
- For mixed case the work is in progress.

- 4 同 2 4 日 2 4 日 2

Poincaré Birkhoff Witt Algebra

Definition

A PBW algebra, *R* over a field *k*, is a *k*-algebra together with elements $x_1, \dots, x_n \in R$ and an a monomial order on \mathbb{N}^n for which there are scalars $q_{ij} \in k^*$ such that 1) $\{x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid (\alpha_1, \cdots, \alpha_n) \in \mathbb{N}^n\}$ is a basis of *R* as a *k*-vector space. 2) $x_i x_j = q_{ij} x_j x_i + p_{ij}$ for $p_{ij} \in R$ with $exp(p_{ij}) < \varepsilon_i + \varepsilon_j$ (1 < i < j < n) where $\varepsilon_i = (0, \dots, 0, 1_i, 0, \dots, 0) \in \mathbb{N}^n$.

イロン イヨン イヨン イヨン

Quantum Symmetric Algebras

Definition

Let k be a field. Let \mathbb{N} be positive integer and for each pair i, j of elements in $\{1, \dots, n\}$, let q_{ij} be a nonzero scalar such that $q_{ii} = 1$ and $q_{ji} = q_{ij}^{-1}$ for i, j. Denote by **q** the corresponding tuple of scalars, $\mathbf{q} := (q_{ij})_{1 \le i < j \le n}$. Let V be a vector space with basis x_1, \dots, x_n , and let

$$S_{\mathbf{q}}(V) := k \langle x_1, \dots, x_n \mid x_i x_j = q_{ij} x_j x_i ext{ for all } 1 \leq i < j \leq n
angle,$$

the quantum symmetric algebra determined by q.

イロン イヨン イヨン イヨン

Let
$$S := k \langle x_1, \cdots, x_{\theta}, \cdots, x_n \mid x_i x_j = q_{ij} x_j x_i$$
 for all $i < j$ and
 $x_i^{N_i} = 0$ for $1 \le i \le \theta \rangle$
Let K be the following complex of free S modules

Let K_{\bullet} be the following complex of free S-modules. For each *n*-tuple (a_1, \dots, a_n) of non-negative integers with $a_i = 0$ or 1 for each $i, \theta + 1 \le i \le n$, let $\Phi(a_1, \dots, a_n)$ be a free generator in degree $a_1 + \dots + a_n$. Let

$$K_m = \bigoplus_{a_1 + \cdots + a_n = m} S\Phi(a_1, \cdots, a_n).$$

(ロ) (同) (E) (E) (E)

For each $i, 1 \leq i \leq \theta$, let $\sigma_i, \tau_i : \mathbb{N} \to \mathbb{N}$ be the functions defined by

$$\sigma_i(a) = egin{cases} 1, ext{ if } a ext{ is odd} \ N_i - 1, ext{ if } a ext{ is even}, \end{cases}$$

and

$$au_i(a) = egin{cases} \sum_{j=1}^a \sigma_i(j), \ ext{for } a \geq 1 \ 0, \ ext{if } a = 0. \end{cases}$$

For each *i*, $\theta + 1 \le i \le n$ we define $\sigma_i(a) = 1$ and $\tau_i(a) = a$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

We define our differential as follows:

$$d_i(\Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n))$$

$$= \begin{cases} \prod_{i < \ell} (-1)^{a_{\ell}} q_{\ell i}^{\sigma_i(a_i)\tau_{\ell}(a_{\ell})} x_i^{\sigma_i(a_i)} \Phi(a_1, \cdots, a_i - 1, \cdots, a_n), & \text{if } a_i > 0 \\ 0, & \text{if } a_i = 0 \end{cases}$$

(日) (四) (注) (注) (注) (注)

Next we give a contracting homotopy: Let $\eta \in S$, and fix $\ell, 1 \leq \ell \leq n$. Write

$$\eta = \begin{cases} \sum_{j=0}^{N_{\ell}-1} \eta_{j} x_{\ell}^{j}, \text{ for } 1 \leq \ell \leq \theta \\ \\ \sum_{j} \eta_{j} x_{\ell}^{j}, \text{ for } \theta + 1 \leq \ell \leq n \end{cases}$$

where η_i is in the subalgebra of *S* generated by the x_i with $i \neq \ell$.

- - 4 回 ト - 4 回 ト

Define
$$s_{\ell}(\eta \Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n))$$

$$= \begin{cases} \sum_{j=0}^{N_i-1} s_\ell(\eta_j x_\ell^j \Phi(a_1, \cdots, a_\theta, a_{\theta+1}, \cdots, a_n)), \text{ for } 1 \le \ell \le \theta \\ \\ \sum_j s_\ell(\eta_j x_\ell^j \Phi(a_1, \cdots, a_\theta, a_{\theta+1}, \cdots, a_n)), \text{ for } \theta + 1 \le \ell \le n \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where

$$s_{\ell}(\eta_{j}x_{\ell}^{j}\Phi(a_{1},\cdots,a_{\theta},a_{\theta+1},\cdots,a_{n}))$$

$$=\begin{cases} \delta_{j>0}(\prod_{\ell< m}(-1)^{a_{m}}q_{m\ell}^{-\sigma_{\ell}(a_{\ell}+1)\tau_{m}(a_{m})})\eta_{j}x_{\ell}^{j-1}\Phi(a_{1},\cdots,a_{\ell}+1,\cdots,a_{\theta},\cdots,a_{n}), \\ \text{ if } a_{\ell} \text{ is even with } 1 \leq \ell \leq \theta \\ \delta_{j,N_{\ell}-1}(\prod_{\ell< m}(-1)^{a_{m}}q_{m\ell}^{-\sigma_{\ell}(a_{\ell}+1)\tau_{m}(a_{m})})\eta_{j}\Phi(a_{1},\cdots,a_{\ell}+1,\cdots,a_{\theta},\cdots,a_{n}), \\ \text{ if } a_{\ell} \text{ is odd with } 1 \leq \ell \leq \theta \\ \omega\eta_{j}x_{\ell}^{j-1}\Phi(a_{1},\cdots,a_{\theta},a_{\theta+1},\cdots,a_{\ell}+1,\cdots,a_{n}), \text{ if } \theta+1 \leq \ell \leq n \end{cases}$$
Where $\delta_{j>0} = 1$ if $j > 0$ and 0 if $j = 0$ and $\omega = \frac{1}{\prod(-1)^{a_{u}}q_{u\ell}^{a_{u}}}.$

 $\ell < u$

< □ > < □ > < □ > < □ > < □ > < □ > ... □

Exactness

Calculations show that for all
$$i, 1 \le i \le n$$

 $(s_i d_i + d_i s_i)(\eta_j x_i^j \Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n))$

$$= \begin{cases} \eta_j x_i^j \Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n), & \text{if } j > 0 \text{ or } a_i > 0 \\ 0, & \text{if } j = 0 \text{ and } a_i = 0 \end{cases}$$
For all i, ℓ when $i \ne \ell$, we get $s_\ell d_i + d_i s_\ell = 0$.

For each $x_1^{j_1} \cdots x_n^{j_n} \Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n)$, let $C = c_{j_1, \cdots, j_n, a_1, \cdots, a_n}$ be the cardinality of the set of all $i(1 \le i \le n)$ such that $j_i a_i = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Define
$$s(x_1^{j_1} \cdots x_n^{j_n} \Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n)) =$$

 $\frac{1}{n-C}(s_1 + \cdots + s_n)(x_1^{j_1} \cdots x_n^{j_n} \Phi(a_1, \cdots, a_{\theta}, a_{\theta+1}, \cdots, a_n))$
and letting $d = d_1 + \cdots + d_n$, we have $sd + ds = id$ on each $K_m, m > 0$. That is, K_{\bullet} is exact in positive degrees.
Exactness at $K_0 = S$, can be seen by looking at the kernel of augmentation map $\varepsilon : S \to k$ and the image of $d(x_i^{j_i-1} \cdots x_n^{j_n} \Phi(0, \cdots, 1, \cdots, 0))$.

(日) (四) (注) (注) (注) (注)

Current Work

Let $\xi_i \in Hom_S(K_2, k)$ be the function dual to $\Phi(0, \dots, 0, 2, 0, \dots, 0)$ and $\eta_i \in Hom_S(K_1, k)$ be the function dual to $\Phi(0, \dots, 0, 1, 0, \dots, 0)$. Identify these functions with the corresponding elements in $H^2(S, k)$ and $H^1(S, k)$, respectively. We would like to show that the ξ_i, η_i generate $H^*(S, k)$, and determine the relations among them.

- 4 回 ト 4 ヨ ト 4 ヨ ト

In order to do this we define chain maps $\xi_i : K_n \to K_{n-2}$ and $\eta_i : K_n \to K_{n-1}$ by $\xi_i(\Phi(a_1, \cdots, a_{\theta})) = \prod_{\ell > i} q_{i\ell}^{N_i \tau_\ell(a_\ell)} \Phi(a_1, \cdots, a_i - 2, \cdots, a_{\theta})$ $\eta_i(\Phi(a_1, \cdots, a_n)) = \prod_{\ell < i} q^{(\sigma_i(a_i) - 1) \tau_\ell(a_\ell)} \prod_{\ell > i} (-1)^{a_\ell} q_{i\ell}^{\tau_\ell(a_\ell)} \cdot x_i^{\sigma_i(a_i) - 1} \Phi(a_1, \cdots, a_i - 1, \cdots, a_n)$

(本部) (本語) (本語) (語)

Thus we conjecture the following: **Conjecture:** Let *S* be the *k*-algebra generated by $x_1, \dots, x_{\theta}, \dots, x_n$, subject to relations $x_i x_j = q_{ij} x_j x_i$ for all i < j, $x_i^{N_i} = 0$ for $1 \le i \le \theta$. Then $H^*(S, k)$ is generated by $\xi_i (i = 1, \dots, \theta)$ and $\eta_i (i = 1, \dots, n)$ where deg $\xi_i = 2$ and deg $\eta_i = 1$, subject to the relations

$$\xi_i \xi_j = q_{ji}^{N_i N_j} \xi_j \xi_i, \ \eta_i \xi_j = q_{ji}^{N_j} \xi_j \eta_i, \ \text{ and } \ \eta_i \eta_j = -q_{ji} \eta_j \eta_i.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Reference

- M. Mastnak, J. Pevtsova, P. Schauenburg and S. Witherspoon, *Cohomology of finite dimensional pointed Hopf algebras*, Proc. Lond. Math. Soc. (3) 100 (2010), no. 2, 377-404.
- V. Ginzburg and S. Kumar, Cohomology of quantum groups at roots of unity, Duke Math. J. 69(1993), no. 1, 179-198.
- Deepak Naidu, Piyush Shroff and Sarah Witherspoon, Hochschild cohomology of group extensions of quantum symmetric algebras, Proc. Amer. Math. Soc. 139 (2011), 1553-1567.

イロト イポト イヨト イヨト

Thank You!

・ロン ・回 と ・ ヨン ・ ヨン

æ