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Goal

Let B be a PBW algebra generated by xy,--- ,xg, -+, x, and
A=B/(", - xM).

To show H*(A, k) = Extj(k, k) is finitely generated.

Notation: H"(A, k) = Ext}(k, k) and H*(A, k) = @,~o H" (A, k).
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Question

So let us ask the question. Is H*(A, k) finitely generated?
@ M. Mastnak, J. Pevtsova, P. Schauenburg and S.
Witherspoon in 2010 proved for nilpotent generators.

@ V. Ginzburg and S. Kumar in 1993 proved for non-nilpotent
generators in case for quantum groups at roots of unity.

@ For mixed case the work is in progress.
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Introduction

Poincaré Birkhoff Witt Algebra

Definition

A PBW algebra, R over a field k, is a k-algebra together with
elements x1,--- ,x, € R and an a monomial order on N” for which
there are scalars gj; € k* such that

1) {x{"---x3" | (o1, -+ ,an) € N"} is a basis of R as a k-vector
space.

2) xixj = qjixjxi + pjj for pj € R with exp(pjj) < e; + ¢;
(1<i<j<n)wheree; =(0,---,0,1;,0,--- ,0) € N".
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Quantum Symmetric Algebras

Definition
Let k be a field. Let N be positive integer and for each pair i, of
elements in {1,--- , n}, let g; be a nonzero scalar such that

gi =1and gj; = q,-J_-1 for i,j. Denote by q the corresponding tuple
of scalars, q := (gjj)1<i<j<n- Let V be a vector space with basis
X1, ,Xp, and let

Sq(V) i=k(x1,...,xn | Xixj = qijxjx; forall 1 < i < j < n),

the quantum symmetric algebra determined by q.
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Introduction

Let S = k(x1, - ,xp, -, %n | XiX; = qjixjx; for all i < j and
XM =0for1< i< 6)

Let K, be the following complex of free S-modules.
For each n-tuple (ai,--- ,an) of non-negative integers with
a;=0or1 foreach i,0+1<i<n,let (a1, - ,a,) be a free
generator in degree a; + - -+ + ap.
Let

Km = @al+---+an:m5¢(ala Tty an)-
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For each i,1 < i <4, let o;, 77 : N — N be the functions defined by

1, if ais odd

oi(a) = L
N; — 1, if ais even,

and

T;(a) =

Z:a,-(j)7 fora>1
j=1

0, ifa=0.

For each i, 8 +1 < i < n we define g;(a) =1 and 7;(a) = a.
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We define our differential as follows:
df((b(ala ctt,d0,4041, 0, an))

H(_1)‘9[qu(a[)TE(aZ)X,?i(ai)¢(al7 ceeyai—1,- ;an)7 if a; >0
= i<t

O, ifa,-:0
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Introduction

Next we give a contracting homotopy:
Let n € S, and fix £,1 < /¢ < n. Write
N;—1

> nixt, for 1< <0
j=0

> npx, for0+1<(<n
J

where 7); is in the subalgebra of S generated by the x; with i # /.
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Define sy(n®(a1, - , a0, ap+1, - ,an))

(N;—1

Z Sg(njxé'GD(al, -+ ,a9,3p41, " ,an)), for 1 <L <0
j=0

ZSZ(UJXZ¢(317"‘ » 40,4041, " 7an))7 for 0 +1 < 14 <n
J
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where_
se(njx;® (a1, - -+ , a9, 3941, , an))

5j>0( H (_l)amq;ge(az-l—l)Tm(am))mxé'flq)(al’ vyag+1,-- a9, a,,),
{<m
if ay is even with 1 < /<46

— 6j7N€_1(H (_1)amq;‘£€(ae+1)Tm(am))njq)(al, -, ay + 1’ S ag, an)’
f<m
if ayisodd with 1 </ <4¥6

wnjxél_lq)(al?"' » 80,4041, " 735—*—17”' 7an)7 |f0+]-§€§n

1

[T-v™az
{<u

Where 6j0=1if j>0and0if j=0and w =
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Exactness

Calculations show that for all i, 1 </ <n
(sidi + disi)(njx!®(a1, -+, ag, ap+1,- - , an))

njxfd)(alv » 40, d0+1, " " 7an)’ IfJ >0ora >0
0, ifj=0and a; =0

For all i, £ when i # /, we get syd; + disp = 0.

For each xJ' - - - xi®(a1, -+ , ap, dp+1, - ,an), let

C =¢j ... jo,a1,,a, be the cardinality of the set of all /(1 </ < n)
such that jija; = 0.
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Define s(x{1 o d(ar, -, ap,g41, 5 dn)) =

n_l C(51+'-~—|—Sn)(XJ1 XJ" ®(a1, -, a0, 30+1, " an))
and letting d = di + - - - + d,,, we have sd + ds = id on each
Km, m > 0. That is, K, is exact in positive degrees.
Exactness at Ky = S, can be seen by looking at the kernel of
augmentation map € : S — k and the image of

(XJ e Xﬁ(b(? ) 7""0))'
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Current Work

Let & € Homs (K>, k) be the function dual to
®(0,---,0,2,0,---,0) and 7; € Homs(Ki, k) be the function dual
to ¢(0,---,0,1,0,---,0).

Identify these functions with the corresponding elements in

H?(S, k) and HY(S, k), respectively. We would like to show that
the &;,n; generate H*(S, k), and determine the relations among
them.
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In order to do this we define chain maps &; : K, — K,_2 and
ni: Knp — Kp—1 by

gi(¢(al,~.. HqNTzal 31,"‘73i*2a"'730)
£>i

ni(®(a1, -+ ,an)) = H q(a,(a) De(ar) H )2 7’;(34)
0<i 0>

'XO','(a,')—lq)

i

(a1, -+ ,ai—1,--+,ap)
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Thus we conjecture the following:

Conjecture: Let S be the k-algebra generated by

X1, ,Xg," " ,Xp, Subject to relations x;x; = gjjx;jx; for all i < J,
x,/.V" =0for 1 <i<46. Then H*(S, k) is generated by
&G(i=1,---,0)and ni(i =1,---,n) where deg & = 2 and deg
n; = 1, subject to the relations

NiN; N,
§i&j = q;; &, migj = g’ §mi, and min; = —qjin;n;.
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