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Goal

Let B be a PBW algebra generated by x1, · · · , xθ, · · · , xn and
A = B/(xN1

1 , · · · , xNθ
θ ).

To show H∗(A, k) = Ext∗A(k , k) is finitely generated.
Notation: H r (A, k) = ExtrA(k , k) and H∗(A, k) =

⊕
r≥0 H r (A, k).
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Question

So let us ask the question. Is H∗(A, k) finitely generated?

M. Mastnak, J. Pevtsova, P. Schauenburg and S.
Witherspoon in 2010 proved for nilpotent generators.

V. Ginzburg and S. Kumar in 1993 proved for non-nilpotent
generators in case for quantum groups at roots of unity.

For mixed case the work is in progress.
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Introduction

Poincaré Birkhoff Witt Algebra

Definition

A PBW algebra, R over a field k, is a k-algebra together with
elements x1, · · · , xn ∈ R and an a monomial order on Nn for which
there are scalars qij ∈ k∗ such that
1) {xα1

1 · · · xαn
n | (α1, · · · , αn) ∈ Nn} is a basis of R as a k-vector

space.
2) xixj = qijxjxi + pij for pij ∈ R with exp(pij) < εi + εj
(1≤ i < j ≤ n) where εi = (0, · · · , 0, 1i , 0, · · · , 0) ∈ Nn.
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Quantum Symmetric Algebras

Definition

Let k be a field. Let N be positive integer and for each pair i , j of
elements in {1, · · · , n}, let qij be a nonzero scalar such that
qii = 1 and qji = q−1

ij for i , j . Denote by q the corresponding tuple
of scalars, q := (qij)1≤i<j≤n. Let V be a vector space with basis
x1, · · · , xn, and let

Sq(V ) := k〈x1, . . . , xn | xixj = qijxjxi for all 1 ≤ i < j ≤ n〉,

the quantum symmetric algebra determined by q.
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Introduction

Let S := k〈x1, · · · , xθ, · · · , xn | xixj = qijxjxi for all i < j and

xNi
i = 0 for 1 ≤ i ≤ θ〉

Let K• be the following complex of free S-modules.
For each n-tuple (a1, · · · , an) of non-negative integers with
ai = 0 or 1 for each i , θ + 1 ≤ i ≤ n, let Φ(a1, · · · , an) be a free
generator in degree a1 + · · ·+ an.
Let

Km = ⊕a1+···+an=mSΦ(a1, · · · , an).
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Introduction

For each i , 1 ≤ i ≤ θ, let σi , τi : N→ N be the functions defined by

σi (a) =

{
1, if a is odd

Ni − 1, if a is even,

and

τi (a) =


a∑

j=1

σi (j), for a ≥ 1

0, if a = 0.

For each i , θ + 1 ≤ i ≤ n we define σi (a) = 1 and τi (a) = a.
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Introduction

We define our differential as follows:
di (Φ(a1, · · · , aθ, aθ+1, · · · , an))

=


∏
i<`

(−1)a`q
σi (ai )τ`(a`)
`i x

σi (ai )
i Φ(a1, · · · , ai − 1, · · · , an), if ai > 0

0, if ai = 0
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Introduction

Next we give a contracting homotopy:
Let η ∈ S , and fix `, 1 ≤ ` ≤ n. Write

η =



Ni−1∑
j=0

ηjx
j
` , for 1 ≤ ` ≤ θ

∑
j

ηjx
j
` , for θ + 1 ≤ ` ≤ n

where ηj is in the subalgebra of S generated by the xi with i 6= `.
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Define s`(ηΦ(a1, · · · , aθ, aθ+1, · · · , an))

=



Ni−1∑
j=0

s`(ηjx
j
`Φ(a1, · · · , aθ, aθ+1, · · · , an)), for 1 ≤ ` ≤ θ

∑
j

s`(ηjx
j
`Φ(a1, · · · , aθ, aθ+1, · · · , an)), for θ + 1 ≤ ` ≤ n
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where
s`(ηjx

j
`Φ(a1, · · · , aθ, aθ+1, · · · , an))

=



δj>0(
∏
`<m

(−1)amq
−σ`(a`+1)τm(am)
m` )ηjx

j−1
` Φ(a1, ··, a` + 1, · · aθ, ··, an),

if a` is even with 1 ≤ ` ≤ θ
δj ,N`−1(

∏
`<m

(−1)amq
−σ`(a`+1)τm(am)
m` )ηjΦ(a1, ··, a` + 1, · · aθ, ··, an),

if a` is odd with 1 ≤ ` ≤ θ
ωηjx

j−1
` Φ(a1, · · · , aθ, aθ+1, · · · , a` + 1, · · · , an), if θ + 1 ≤ ` ≤ n

Where δj>0 = 1 if j > 0 and 0 if j = 0 and ω =
1∏

`<u

(−1)auqau
u`

.
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Exactness

Calculations show that for all i , 1 ≤ i ≤ n
(sidi + di si )(ηjx

j
i Φ(a1, · · · , aθ, aθ+1, · · · , an))

=

{
ηjx

j
i Φ(a1, · · · , aθ, aθ+1, · · · , an), if j > 0 or ai > 0

0, if j = 0 and ai = 0

For all i , ` when i 6= `, we get s`di + di s` = 0.
For each x j1

1 · · · x
jn
n Φ(a1, · · · , aθ, aθ+1, · · · , an), let

C = cj1,··· ,jn,a1,··· ,an be the cardinality of the set of all i(1 ≤ i ≤ n)
such that jiai = 0.
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Exactness

Define s(x j1
1 · · · x

jn
n Φ(a1, · · · , aθ, aθ+1, · · · , an)) =

1

n − C
(s1 + · · ·+ sn)(x j1

1 · · · x
jn
n Φ(a1, · · · , aθ, aθ+1, · · · , an))

and letting d = d1 + · · ·+ dn, we have sd + ds = id on each
Km,m > 0. That is, K• is exact in positive degrees.
Exactness at K0 = S , can be seen by looking at the kernel of
augmentation map ε : S → k and the image of
d(x ji−1

i · · · x jn
n Φ(0, · · · , 1, · · · , 0)).
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Current Work

Let ξi ∈ HomS(K2, k) be the function dual to
Φ(0, · · · , 0, 2, 0, · · · , 0) and ηi ∈ HomS(K1, k) be the function dual
to Φ(0, · · · , 0, 1, 0, · · · , 0).
Identify these functions with the corresponding elements in
H2(S , k) and H1(S , k), respectively. We would like to show that
the ξi , ηi generate H∗(S , k), and determine the relations among
them.
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In order to do this we define chain maps ξi : Kn → Kn−2 and
ηi : Kn → Kn−1 by

ξi (Φ(a1, · · · , aθ)) =
∏
`>i

q
Niτ`(a`)
i` Φ(a1, · · · , ai − 2, · · · , aθ)

ηi (Φ(a1, · · · , an)) =
∏
`<i

q(σi (ai )−1)τ`(a`)
∏
`>i

(−1)a`q
τ`(a`)
i`

·xσi (ai )−1
i Φ(a1, · · · , ai − 1, · · · , an)
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Thus we conjecture the following:
Conjecture: Let S be the k-algebra generated by
x1, · · · , xθ, · · · , xn, subject to relations xixj = qijxjxi for all i < j ,

xNi
i = 0 for 1 ≤ i ≤ θ. Then H∗(S , k) is generated by
ξi (i = 1, · · · , θ) and ηi (i = 1, · · · , n) where deg ξi = 2 and deg
ηi = 1, subject to the relations

ξiξj = q
NiNj

ji ξjξi , ηiξj = q
Nj

ji ξjηi , and ηiηj = −qjiηjηi .
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