Groups Acting On Restricted Lie Algebras and Centers of Deformations

C. Uhl

April 23, 2011

Introduction

PBW Property

Example of an algebra that doesn't satisfy PBW

Connection Between PBW and Lie Algebras

$$
v^{p}-v^{[p]} \in Z(A)
$$

Smashing Restricted Lie Algebra with a Group

Poincare-Birkhoff-Witt (PBW Property)

$$
\text { Let } V=\mathbb{F}-\operatorname{span}\left\{v_{1}, \cdots, v_{n}\right\} \cong \mathbb{F}^{n} \text { vector space. }
$$

Let $\mathbb{F}<v_{1}, \cdots, v_{n}>$ be the Free Algebra on v_{1}, \cdots, v_{n}.
$A=\mathbb{F}<v_{1}, \cdots, v_{n}>/$ relations of the form $v w-w v=$ something in V

A satisfies PBW means $\left\{v_{1}^{k_{1}} \cdots v_{n}^{k_{n}}: k \in \mathbb{Z}_{\geq 0}\right\}$ is \mathbb{F}-basis for A as \mathbb{F}-vector space (ie every $a \in A$ can be written UNIQUELY as finite sum of form $a=\sum \alpha v_{1}^{k_{1}} \cdots v_{n}^{k_{n}}$

Example that Does Not Satisfy PBW

$A=\mathbb{F}<x, y, z>/$ relations

```
Relations: yx = xy + x, zy = yz+y, zx = xz +x
```

$$
\begin{aligned}
& z y x=(z y) x=(y z+y) x=y z x+y x=y(x z+x)+(x y+x)= \\
& y x z+y x+x y+x=(x y+x) z+(x y+x)+x y+x= \\
& x y z+x z+x y+x+x y+x=x y z+x z+2 x y+2 x
\end{aligned}
$$

$$
\begin{aligned}
& z y x=z(y x)=z(x y+x)=z x y+z x=(x z+x) y+(x z+x)= \\
& x z y+x y+x z+x=x(y z+y)+x y+x z+x= \\
& x y z+x y+x y+x z+x=x y z+x z+2 x y+x
\end{aligned}
$$

Not Unique Canonical Form

Example that Does Not Satisfy PBW - continued

Not Coming from a Lie Algebra!

If it were $[y, x]=x, \quad[z, x]=x, \quad[z, y]=y$.

$$
\begin{aligned}
{[x,[y, z]]+[y,[z, x]]+[z,[x, y]] } & =[x,-y]+[y, x]+[z,-x] \\
& =x+x+-x \\
& =x \neq 0
\end{aligned}
$$

Fails Jacobi Identity

Note: Smashing with a Group won't help.

Theorems

Theorem

An algebra that satisfies PBW is isomorphic to a deformation of a commutative polynomial ring. And the PBW property turns out to be equivalent to the commutator defining a Lie Bracket on a vector space V.

Theorem

For $L=$ Lie Algebra
$U=\mathbb{F}<v_{1}, \cdots, v_{n}>/<v w-w v-[v, w]>$.
U satisfies $P B W$.

Lie Algebra Definition

A Lie Algebra is a vector space V together with a multiplication(usually termed Lie Bracket) and denoted by [x, y] such that

1. $[x, y]$ depends linearly on x and y.
2. $[x, x]=0 \quad \forall x \in V$.
3. $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0 \quad \forall x, y, z$.

Properties 1 and 2 imply that $[y, x]=-[x, y] \forall x, y \in V$. Two elements x and y are said to commute if $[x, y]=0$.

Theorem

If algebra A is coming from restricted Lie Algebra (in the sense that the commutator is the same as the Lie Bracket), then $v^{p}-v^{[p]} \in Z(A)$.

Proof:

We'll look at the case $p=3$, and the general case follows similarly. So let char $\mathbb{F}=3$.
WTS $v^{3}-v^{[3]}$ commutes with all $a \in A$.
Take $a \in A$.
Note: av=va-[v,a]
WTS $\left(v^{3}-v^{[3]}\right) a=a\left(v^{3}-v^{[3]}\right)$

$$
v^{3} a-v^{[3]} a=a v^{3}-a v^{[3]}
$$

$$
\begin{gathered}
=(v a-[v, a]) v^{2}-\left(v^{[3]} a-\left[v^{[3]}, a\right]\right) \\
=v a v^{2}-[v, a] v^{2}-\left(v^{3]} a-\left[v^{[3]}, a\right]\right) \\
=v(v a-[v, a]) v-[v, a] v^{2}-\left(v^{[3]} a-\left[v^{[3]}, a\right]\right) \\
=v^{3} a-3 v^{2}[v, a]+3 v\left[v^{[2]}, a\right]-v^{[3]} a \\
\\
=v^{3} a-v^{[3]} a
\end{gathered}
$$

In general, we will get coefficients of the form p choose r, which corresponds to Pascal's triangle. When p is prime, all coefficients except the first and last are divisible by p-and so in char p , they become 0 . We are left with only the first and last terms. Thus $v^{p}-v^{[p]} \in Z(A)$ over char p. QED.

Skew Group Algebra

$\mathbb{F}<v_{1}, \cdots, v_{n}>\# G$, is the \mathbb{F}-algebra generated by $v \in V$ together with g in G such that

1. $\mathbb{F}[G]$ is subalgebra and
2. $g v=g v g \quad \forall v \in V, g \in G$.
$R=\mathbb{F}<x, y, z\rangle \# \mathrm{G} /$ relations

$$
y x=x y+z \quad z y=y z+x
$$

Relations: $\quad z x=x z-y \quad g x=y g \quad g^{3}=1$

$$
g y=z g \quad g z=x g
$$

$g=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), \mathrm{G}=\mathrm{g}$ acts on $\mathrm{V}=\mathbb{F}-\operatorname{span}\{x, y, z\}$.
So $g^{3}=$ identity matrix.

This example is an algebra coming from a Restricted Lie Algebra. $a \mapsto a^{[p]}$ is given by $a^{[p]}=(-1)^{(p-1) / 2} a$ for $a=x, y, z . \mathrm{Z}(\mathrm{R})$ is generated by $x^{2}+y^{2}+z^{2}$ and $a^{p}-a^{[p]}$.
The center of an unsmashed algebra may contribute to the center of the corresponding smashed algebra.

Skew Group Algebra Example continued

Since $x^{2}+y^{2}+z^{2}$ is g-invariant it lies in the center of the smashed algebra.
Also $z^{p}+x^{p}+y^{p}-z^{[p]}-x^{[p]}-y^{[p]}$ is g-invariant.
Also $g^{3}=$ identity is in the center of the smashed algebra.

In characteristic 3, this can be checked by hand.

Thank You!

