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Introduction

PBW Property

Example of an algebra that doesn't satisfy PBW

Connection Between PBW and Lie Algebras

vp � v [p] 2 Z (A)

Smashing Restricted Lie Algebra with a Group
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Poincare-Birkho�-Witt (PBW Property)

Let V = F� spanfv1; � � � ; vng �= F
n vector space.

Let F < v1; � � � ; vn > be the Free Algebra on v1; � � � ; vn.

A = F < v1; � � � ; vn > = relations of the form vw-wv=something in
V

A satis�es PBW means fvk11 � � � vknn : k 2 Z�0g is F-basis for A as
F-vector space (ie every a 2 A can be written UNIQUELY as �nite
sum of form a =

P
�vk11 � � � vknn
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Example that Does Not Satisfy PBW

A = F < x ; y ; z > =relations

Relations : yx = xy + x ; zy = yz + y ; zx = xz + x

zyx = (zy)x = (yz + y)x = yzx + yx = y(xz + x) + (xy + x) =
yxz + yx + xy + x = (xy + x)z + (xy + x) + xy + x =
xyz + xz + xy + x + xy + x = xyz + xz + 2xy + 2x

zyx = z(yx) = z(xy + x) = zxy + zx = (xz + x)y + (xz + x) =
xzy + xy + xz + x = x(yz + y) + xy + xz + x =
xyz + xy + xy + xz + x = xyz + xz + 2xy + x

Not Unique Canonical Form
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Example that Does Not Satisfy PBW - continued

Not Coming from a Lie Algebra!

If it were [y ; x ] = x ; [z ; x ] = x ; [z ; y ] = y :

[x ; [y ; z ]] + [y ; [z ; x ]] + [z ; [x ; y ]] = [x ;�y ] + [y ; x ] + [z ;�x ]

= x + x +�x

= x 6= 0

Fails Jacobi Identity

Note: Smashing with a Group won't help.
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Theorems

Theorem

An algebra that satis�es PBW is isomorphic to a deformation of a

commutative polynomial ring. And the PBW property turns out to

be equivalent to the commutator de�ning a Lie Bracket on a

vector space V.

Theorem

For L = Lie Algebra

U = F < v1; � � � ; vn > = < vw � wv � [v ;w ] > :
U satis�es PBW.
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Lie Algebra De�nition

A Lie Algebra is a vector space V together with a
multiplication(usually termed Lie Bracket) and denoted by [x ; y ]
such that
1. [x ; y ] depends linearly on x and y.
2. [x ; x ] = 0 8 x 2 V .
3. [x ; [y ; z ]] + [y ; [z ; x ]] + [z ; [x ; y ]] = 0 8 x ; y ; z .

Properties 1 and 2 imply that [y ; x ] = �[x ; y ] 8x ; y 2 V . Two
elements x and y are said to commute if [x ; y ] = 0.
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v
p � v

[p]

Theorem

If algebra A is coming from restricted Lie Algebra (in the sense

that the commutator is the same as the Lie Bracket), then

vp � v [p] 2 Z (A).

Proof:

We'll look at the case p = 3, and the general case follows similarly.
So let char F = 3.
WTS v3 � v [3] commutes with all a 2 A.
Take a 2 A.
Note: av=va-[v,a]
WTS (v3 � v [3])a = a(v3 � v [3])

v3a� v [3]a = av3 � av [3]
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v
p � v

[p] continued

= (va� [v ; a])v2 � (v [3]a� [v [3]; a])

= vav2 � [v ; a]v2 � (v [3]a� [v [3]; a])

= v(va� [v ; a])v � [v ; a]v2 � (v [3]a� [v [3]; a])
� � �

= v3a� 3v2[v ; a] + 3v [v [2]; a]� v [3]a

= v3a� v [3]a
In general, we will get coe�cients of the form p choose r, which
corresponds to Pascal's triangle. When p is prime, all coe�cients
except the �rst and last are divisible by p - and so in char p, they
become 0. We are left with only the �rst and last terms. Thus
vp � v [p] 2 Z (A) over char p. QED.
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Skew Group Algebra

F < v1; � � � ; vn > #G , is the F-algebra generated by v 2 V

together with g in G such that
1. F[G ] is subalgebra and
2. gv = gvg 8v 2 V ; g 2 G :
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Skew Group Algebra Example p � 3

R = F < x ; y ; z > # G/relations

Relations:
yx=xy+z zy=yz+x
zx=xz-y gx=yg g3 = 1
gy=zg gz=xg

g =

0
@
0 0 1
1 0 0
0 1 0

1
A ; G=g acts on V=F-spanfx ; y ; zg.

So g3 = identity matrix.

This example is an algebra coming from a Restricted Lie Algebra.
a 7! a[p] is given by a[p] = (�1)(p�1)=2a for a = x ; y ; z . Z(R) is
generated by x2 + y2 + z2 and ap � a[p].
The center of an unsmashed algebra may contribute to the center
of the corresponding smashed algebra.
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Skew Group Algebra Example continued

Since x2 + y2 + z2 is g-invariant it lies in the center of the
smashed algebra.
Also zp + xp + yp � z [p] � x [p] � y [p] is g -invariant.
Also g3= identity is in the center of the smashed algebra.

In characteristic 3, this can be checked by hand.
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Thank You

Thank You!

C. Uhl Groups Acting On Restricted Lie Algebras and Centers of Deformations


