The exam will be comprehensive: roughly a quarter of the problems will be on the material of Exam 1, a quarter on the material of Exam 2, and half on the material covered after Exam 2. It will be formatted like the midterms:

- Notes, books, and calculators will not be allowed.
- For full credit, show enough work to explain your method.
- The problems will mainly be computational, and none will be proof-based.

Here is a large number of practice problems, some drawn from the midterms.

1. Let $A:=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$.
(a) Find a factorization $A=L T$, where L is lower triangular with 1's on the diagonal, and T is upper triangular.
(b) Find a factorization $A=L D U$, where L is lower triangular, U is upper triangular, both L and U have 1's on the diagonal, and D is diagonal.
2. For each of these three matrices, do the following:
(a) Find the $L P U$-factorization.
(b) Find a lower triangular matrix \tilde{L} giving the $P \tilde{L} U$-factorization.

$$
\left(\begin{array}{rrr}
0 & 0 & 2 \\
2 & -1 & -2 \\
-6 & 2 & 7
\end{array}\right), \quad\left(\begin{array}{rrr}
-1 & 1 & 1 \\
1 & 1 & -2 \\
1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{rrr}
2 & -1 & -2 \\
2 & -1 & 0 \\
-2 & 0 & 3
\end{array}\right)
$$

3. Let $A:=\left(\begin{array}{rrrr}2 & -4 & 4 & 6 \\ 3 & -6 & -1 & 2 \\ -5 & 10 & -3 & -8\end{array}\right)$.
(a) Find R, the reduced row-echelon form of A with zero rows deleted.
(b) Find the $C R$-factorization of A.
(c) Find the $C W^{-1} B$-factorization of A.
(d) Find a basis of the row space $\operatorname{Row}(A)$.
(e) Find the special solution basis of the null space $\operatorname{Null}(A)$.
(f) Find the pivot column basis of the column space $\operatorname{Col}(A)$.
(g) Find a basis of the left null space $\operatorname{Null}\left(A^{T}\right)$.
(h) $A x=b$ is solvable for which of the following two vectors? For that one, give the complete solution.

$$
b=\left(\begin{array}{r}
2 \\
11 \\
-9
\end{array}\right), \quad b=\left(\begin{array}{r}
-2 \\
11 \\
-9
\end{array}\right)
$$

4. Let $A:=\left(\begin{array}{rr}1 & 1 \\ 1 & -1 \\ -1 & 1\end{array}\right)$.
(a) Find $\left(A^{T} A\right)^{-1}$.
(b) Find the matrix P which projects to the column space $\operatorname{Col}(A)$.
(c) Find the vector in $\operatorname{Col}(A)$ closest to the standard basis vector e_{3}.
(d) Find the matrix \hat{P} which projects to the left null space $\operatorname{Null}\left(A^{T}\right)$.
5. Consider $v_{1}=\left(\begin{array}{r}-3 \\ 3 \\ 3\end{array}\right), v_{2}=\left(\begin{array}{r}3 \\ -3 \\ 3\end{array}\right), v_{3}=\left(\begin{array}{r}3 \\ 3 \\ -3\end{array}\right)$.
(a) Find orthogonal vectors p_{1}, p_{2}, p_{3} according to the Gram-Schmidt process:

$$
p_{1}=v_{1}, \quad p_{2}=v_{2}-P_{p_{1}} v_{2}, \quad p_{3}=v_{3}-P_{p_{1}} v_{3}-P_{p_{2}} v_{3}
$$

(b) Set $A:=\left(\begin{array}{ccc}\mid & \mid & \mid \\ v_{1} & v_{2} & v_{3} \\ \mid & \mid & \mid\end{array}\right)$ and $P:=\left(\begin{array}{ccc}\mid & \mid & \mid \\ p_{1} & p_{2} & p_{3} \\ \mid & \mid & \mid\end{array}\right)$. Find an upper triangular matrix U with 1's on the diagonal such that $A=P U$.
(c) Find Q orthogonal and R upper triangular such that $A=Q R$.
(d) Find Q^{-1}.
6. Suppose that A is a 2×2 matrix such that

- $\binom{2}{1}$ is an eigenvector of eigenvalue 2 ,
- $\binom{3}{2}$ is an eigenvector of eigenvalue 1.

Find X and Λ such that $A=X \Lambda X^{-1}$, then find A, and then find an explicit formula for A^{k}.
7. Suppose that B is 3×3, $\operatorname{trace}(B)=6, \operatorname{det}(B)=6$, and $\operatorname{Col}_{1}(B)=e_{1}$.
(a) Find one eigenvector and all eigenvalues of B.
(b) Give an example of such a matrix that is not diagonal.
(c) Are all such matrices diagonalizable? Explain.
8. Let $B:=\left(\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right)$.
(a) Find a diagonalization $B=P \Lambda P^{-1}$.
(b) Find bases of B 's range, null space, and eigenspaces.
9. Consider $\left(\begin{array}{rr}4 & -8 \\ -8 & 25\end{array}\right)$ and $\left(\begin{array}{rr}4 & 12 \\ 12 & 25\end{array}\right)$.
(a) Is either of these matrices positive definite symmetric? Explain.
(b) Factor both matrices into products of the form $L D L^{T}$, where L is lower triangular with 1 's on the diagonal and D is diagonal.
(c) If the matrix is PDS , factor it as $C^{T} C$, where C is upper triangular.
10. Find the Cholesky decomposition $C^{T} C$ of $\left(\begin{array}{rrr}1 & -1 & 2 \\ -1 & 5 & 0 \\ 2 & 0 & 6\end{array}\right)$.
11. Let $S:=\left(\begin{array}{rrr}3 & 1 & -2 \\ 1 & 3 & 2 \\ -2 & 2 & 0\end{array}\right)$.
(a) Find orthonormal bases of S 's eigenspaces.
(b) Find an orthogonal diagonalization $M \Lambda M^{T}$ of S.
(c) Find the matrices projecting orthogonally to S 's eigenspaces.
12. Consider $E:=\frac{1}{4}\left(\begin{array}{rr}7 & 3 \sqrt{3} \\ 3 \sqrt{3} & 13\end{array}\right)$.
(a) Find the PDS square root $E^{1 / 2}$.
(b) Graph $x^{T} E x=4$ as precisely as possible.
(c) Find an SVD $U \Sigma V^{T}$ of E. How are U and V related? Explain why.
(d) Find all orthogonal M such that $M \Sigma M^{T}=E$. How do they act on \mathbb{R}^{2} ?
13. Find the PDS square root of $\left(\begin{array}{rr}2 & \sqrt{2} \\ \sqrt{2} & 3\end{array}\right)$.
14. Let $S:=\left(\begin{array}{rr}7 & -\sqrt{3} \\ -\sqrt{3} & 5\end{array}\right)$.
(a) Find an orthogonal diagonalization $S=M \Lambda M^{T}$.
(b) Find orthonormal bases of S 's eigenspaces.
(c) Find the matrices projecting orthogonally to S 's eigenspaces.
15. Let $F:=\left(\begin{array}{rr}2 & 0 \\ 1 & -5\end{array}\right)$.
(a) Find a factorization $F=J U$, where J has orthogonal columns, and U is upper triangular with 1's on the diagonal.
(b) Find a factorization $F=K D U$, where K is orthogonal, D is diagonal with positive diagonal entries, and U is upper triangular with 1's on the diagonal.
16. Let $C:=\left(\begin{array}{rr}1 & -1 \\ -1 & 4\end{array}\right)$.
(a) Find a factorization $C=L D L^{T}$, where L is lower triangular with 1 's on the diagonal, and D is diagonal with positive diagonal entries.
(b) Find a factorization $C=T T^{T}$, where T is lower triangular.
17. Let $G:=\left(\begin{array}{rr}2 & -3 \\ 0 & 2\end{array}\right)$.
(a) Find an orthogonal diagonalization of $G^{T} G$.
(b) Find the modulus $|G|$, which is by definition $\left(G^{T} G\right)^{1 / 2}$.
(c) Find the SVD $G=K \Sigma M^{T}$ (K, M orthogonal, Σ positive diagonal).
(d) Find the polar decomposition $G=Y|G|$, where Y is orthogonal.
18. Consider the matrix B from Problem 8 above.
(a) Write B as $x y^{T}$ for vectors x and y.
(b) Find B 's singular value.
(c) Find B's Schmidt decomposition.
(d) Find B 's pseudo-inverse, B^{+}.
(e) Compute $B^{+} B$ and $B B^{+}$, and also give them in terms of x and y.
19. Let $u_{1}:=\left(\begin{array}{r}1 \\ -1 \\ 1\end{array}\right), u_{2}:=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), w_{1}:=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), w_{2}:=\left(\begin{array}{r}2 \\ -2 \\ 1\end{array}\right)$, and

$$
H:=w_{1} u_{1}^{T}+w_{2} u_{2}^{T}
$$

(a) Find the singular values and the Schmidt decomposition of H.
(b) Find the reduced SVD $H=K_{\mathrm{r}} \Sigma_{\mathrm{r}} M_{\mathrm{r}}^{T}$.
(c) Compute H and its pseudo-inverse H^{+}explicitly.
20. One of these matrices is a rotation and one is not:

$$
K:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad L:=\left(\begin{array}{rrr}
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

(a) Which one is a rotation?
(b) Give the axis and angle of the rotation.
(c) Find the real eigenvector v of the non-rotation.
(d) Describe the action of the non-rotation on v, and also on the plane v^{\perp}.
21. Define $\Theta_{z}:=\frac{1}{\sqrt{2}}\left(\begin{array}{rrr}1 & -1 & \\ 1 & 1 & \\ & & \sqrt{2}\end{array}\right), \Theta_{x}:=\frac{1}{\sqrt{2}}\left(\begin{array}{rrr}\sqrt{2} & & \\ & 1 & -1 \\ & 1 & 1\end{array}\right)$.
(a) Give the angles and axes of rotation of Θ_{z} and Θ_{x}.
(b) Give the angle (as an arc cosine) and the axis of rotation of $\Theta_{z} \Theta_{x}$.
(c) Give the angle and the axis of rotation of $\Theta_{z} \Theta_{x} \Theta_{z}^{T}$.
22. Let Φ be a 2×2 reflection matrix. Define $\hat{\Phi}:=\left(\begin{array}{ll}\Phi & \\ & -1\end{array}\right)$, a 3×3 matrix. Describe the action of $\hat{\Phi}$ on \mathbb{R}^{3} in terms of features of Φ.
23. Find block diagonalizations $P \Gamma P^{-1}$ of the following matrices. Include bases of the eigenspaces and generalized eigenspaces. Explain all steps.

$$
\left(\begin{array}{ll}
-3 & 2 \\
-2 & 1
\end{array}\right), \quad\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
& & 0 & 1 \\
& & & 2
\end{array}\right), \quad\left(\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
& 0 & 1 & 1 & 1 \\
& & 1 & 1 & 1 \\
& & & 1 & 1 \\
& & & & 0
\end{array}\right)
$$

24. Let Ξ be an invertible anti-upper triangular matrix:

$$
\Xi=\left(\begin{array}{ccccc}
& & & \xi^{\xi_{1}} \\
& * & & \xi_{2} & \\
& & . & & \\
\xi_{n} & \xi_{n-1} & & &
\end{array}\right) . \quad \text { Describe } \Xi^{-1} .
$$

