Math 1720 Final Review Problems

Note that the final IS COMPREHENSIVE for the entire semester's material but these review problems only cover a sample of problems from sections 8.4, 8.7 and $\S 9$. You should also review the earlier sections. For problems on this material I suggest looking again at the earlier review problems, midterms, quizzes, and other problems in the text. In the exam there will be a little more focus on the most recent material, but not too much.

Problems

1. Compute, or show that it does not exist,

$$
\int_{0}^{11} \frac{4}{\sqrt[3]{x-10}}
$$

2. Compute, or show that it does not exist,

$$
\int_{0}^{11} \frac{4}{3 x-10} d x
$$

2.5. Compute, or show that it does not exist,

$$
\int_{0}^{1} \frac{x}{\sqrt{1-x^{4}}} d x
$$

(Hint: at some point, make a substitution to make the integrand involve a form related to trig subs.) Use symmetry to deduce what \int_{-1}^{1} is, with the same integrand.
3.(a) Find

$$
\int_{4}^{5} \frac{x^{3}-x-3}{(x-3) x^{3}} d x
$$

(b) Find

$$
\int_{2}^{3} \frac{x}{x^{3}-1} d x
$$

4. Let $\left\{a_{n}\right\}_{n=5}^{\infty}$ be the sequence with terms

$$
a_{n}=\int_{0}^{2 n} 4^{-x+10} d x
$$

Determine whether $\lim _{n \rightarrow \infty} a_{n}$ exists, and if so, its value. How can you write this as an improper integral?
5. Find

$$
\int_{-\infty}^{\infty} \frac{e^{x}}{e^{2 x}+1} d x
$$

6. Find

$$
\int_{10}^{\infty} \frac{1}{x \ln \left(x^{3}\right)} d x
$$

7.(a) Given the recurrence $a_{1}=3, a_{n+1}=\frac{a_{n}-1}{a_{n}}$, find the first eight terms of the sequence. Does $\lim _{n \rightarrow \infty} a_{n}$ exist? Explain.
(b) Find a recurrence, and a general formula for a_{n}, for the sequence

$$
4,7,12,19,28,39, \ldots
$$

assuming that the first index is $n=1$. (Hint: for the general formula, try subtracting 3 from every term.)
(c) Find a formula for a_{n}, for the sequence

$$
4,5+\frac{1}{2}, 4+\frac{3}{4}, 5+\frac{1}{8}, 4+\frac{15}{16}, \ldots
$$

Based on your formula, does the limit of the sequence exist? Explain.
8. (a) If the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is geometric and $a_{1}=5$ and $a_{3}=15$, what can you say about the ratio r of the sequence? What is the value of a_{101} ?
(b) If the sequence $a_{0}, a_{1}, a_{2}, \ldots$ is such that $a_{1}=5$ and $a_{3}=15$, what can you say about a_{101} ?
9. Suppose $\left\{c_{n}\right\}_{n=3}^{\infty}$ is a sequence such that $\lim _{n \rightarrow \infty} c_{n}=6$, and $\left\{d_{n}\right\}_{n=3}^{\infty}$ has limit 3 . In problems (a^{*}), (a) and (b), compute the limit of the sequence, if possible, where in $\left(\mathrm{a}^{*}\right)$ the sequence has the terms e_{n} shown, in (a), the terms a_{n} and in (b), the terms b_{n}. Do part (c).
(a^{*}) The sequence with terms

$$
e_{n}=n d_{n}^{3}-\frac{n^{2} d_{n}^{3}-d_{n}}{n+1}, \quad n \geq 3
$$

(a) The sequence with terms

$$
a_{n}=n d_{n}-\frac{\left(n^{2}-5 n+1\right) c_{n}}{2 n}, \quad n \geq 3
$$

(b) The sequence with terms

$$
b_{n}=n^{\frac{1}{n^{3}}}, \quad n \geq 1
$$

(c) Determine whether

$$
\sum_{n=3}^{\infty} d_{n} / c_{n}
$$

converges.
10.(a) Find the first four partial sums for the series

$$
\sum_{n=0}^{\infty} \frac{1}{7 \cdot 3^{n}}
$$

(b) Evaluate the sum

$$
\sum_{n=0}^{1,000,000} \frac{1}{7 \cdot 3^{n}}
$$

simplifying fully.
(c) Does the series in (a) converge? If so, find the value it converges to.
(d) Repeat (c) for

$$
\sum_{n=0}^{\infty}(-7 / 4)^{n}(3 / 4)^{n}
$$

(e) Repeat (c) for

$$
\sum_{n=0}^{\infty} 500(-7 / 4)^{n}(3 / 4)^{2 n}
$$

