
Math 1720 Final Review Problems

Note that the final IS COMPREHENSIVE for the entire semester’s material
but these review problems only cover a sample of problems from sections 8.4, 8.7
and §9. You should also review the earlier sections. For problems on this mate-
rial I suggest looking again at the earlier review problems, midterms, quizzes,
and other problems in the text. In the exam there will be a little more focus on
the most recent material, but not too much.

Problems

1. Compute, or show that it does not exist,∫ 11

0

4
3
√
x− 10

.

Solution.
Note that the interval 0 ≤ x ≤ 11 includes an asymptote of the integrand
at x = 10. For both 4 and 3

√
x− 10 are continuous, and as x → 10, we have

4→ 4 6= 0, and 3
√
x− 10→ 3

√
10− 10 = 0. Note that also for x > 10, x−10 > 0,

so 3
√
x− 10 > 0, so as x → 10+, we have 3

√
x− 10 → 0+. And the numerator

→ 4 > 0. So as x → 10+, the integrand → +∞. Similarly, as x → 10−,
3
√
x− 10→ 0−, and the integrand → −∞.

The integrand is, however, continuous over the intervals [0, 10) and (10, 11].
So we compute the integral by breaking it into these two sub-intervals:∫ 10

0

4
3
√
x− 10

dx+

∫ 11

10

4
3
√
x− 10

dx,

given that each of these two integrals exists itself, or both are +∞, or both are
−∞.

For the first one: ∫ 10

0

4
3
√
x− 10

dx,

and as discussed above, the integrand → −∞ as x → 10−, and is continuous
over [0, 10), so we compute this integral as the limit:

= lim
b→10−

∫ b

0

4
3
√
x− 10

dx

= lim
b→10−

4

∫ b

0

(x− 10)−1/3dx

And since ((x− 10)2/3)′ = (2/3)(x− 10)−1/3(x− 10)′ = (2/3)(x− 10)−1/3, we
have

= 4 lim
b→10−

(3/2)(x− 10)2/3
∣∣b
0

= 6 lim
b→10−

[(b− 10)2/3 − (−10)2/3]

= 6 lim
b→10−

[(b− 10)2/3 − 3
√

100]
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= 6[( lim
b→10−

(b− 10)2/3)− lim
b→10−

3
√

100]

= 6[( lim
b→10−

(b− 10)2/3)− 3
√

100]

And since the function f(x) = (x− 10)2/3 is continuous, we just plug x = 10 in
to compute the remaining limit, so this is

= 6[(10− 10)2/3 − 3
√

100] = 6[02/3 − 3
√

100]

= 6[0− 3
√

100] = −6
3
√

100.

For the second one: ∫ 11

10

4
3
√
x− 10

dx

For similar reasons as with the first one, we compute this interal as a limit:

= lim
b→10+

∫ 11

b

4
3
√
x− 10

dx

= lim
b→10+

4

∫ 11

b

(x− 10)−1/3dx

= 4 lim
b→10+

(3/2)(x− 10)2/3
∣∣11
b

= 6 lim
b→10+

[(11− 10)2/3 − (b− 10)2/3]

= 6[1− lim
b→10+

(b− 10)2/3]

And again since (x− 10)2/3 is continuous, this is

= 6[1− (10− 10)2/3] = 6[1− 0] = 6.

So both sides existed, so the overall integral exists and is their sum:

= −6
3
√

100 + 6

= 6(1− 3
√

100).

2. Compute, or show that it does not exist,∫ 11

0

4

3x− 10
dx

Solution.
The integrand f(x) = 4/(3x−10) is continuous over [0, 10/3) and over (10/3, 11],
but has an asymptote at x = 10/3: As x → (10/3)−, the numerator → 4 and
the denominator 3x − 10 → 0−, so f(x) → −∞. And as x → (10/3)+, the
numerator → 4 and the denominator 3x− 10→ 0+, so f(x)→ +∞. So like in
the previous problem, we compute the integral as a sum of two integrals, each
of which has a single asymptote at one of its end points x = 10/3:

=

∫ 10/3

0

f(x)dx+

∫ 11

10/3

f(x)dx
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And since f(x) is continuous over [0, 10/3) and f(x)→ −∞ as x→ 10/3−, we
compute the the first as∫ 10/3

0

f(x)dx = lim
b→10/3−

∫ b

0

f(x)dx

= lim
b→10/3−

4

∫ b

0

1

3x− 10
dx

And since (ln(|3x− 10|))′ = 1
3x−10 (3x− 10)′ = 3

3x−10 , we have

= 4 lim
b→10/3−

1

3
ln(|3x− 10|)

∣∣b
0

= (4/3) lim
b→10/3−

[ln(|3b− 10|)− ln(| − 10|)]

= (4/3)

[
[ lim
b→10/3−

ln(|3b− 10|)]− lim
b→10/3−

ln(10)

]
= (4/3)

[
[ lim
b→10/3−

ln(|3b− 10|)]− ln(10)

]
Now as b→ 10/3−, |3b− 10| → 0+, so ln(|3b− 10|)→ −∞. So this is

(4/3)[−∞− ln(10)] = −∞.

Now consider the second integral in the sum:∫ 11

10/3

f(x)dx

Note that f(x) has odd symmetry about the line x = 10/3 (i.e. f(10/3− x) =
−f(10/3 + x) for all x 6= 0). So the integral (a)∫ 10/3

0

f(x)dx

is odd-symmetric with the integral (b)∫ 20/3

10/3

f(x)dx.

I.e., the value of (a) is the negative of the value of (b). We calclulated the value
of (a) as −∞ above. So (b) has value +∞, which means

lim
b→10/3+

∫ 20/3

b

f(x)dx =∞.

But 10/3 < 20/3 < 11, and f(x) > 0 for all x > 10/3, so

A =

∫ 11

20/3

f(x)dx ≥ 0,
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and for any b > 10/3,∫ 20/3

b

f(x)dx+

∫ 11

20/3

f(x)dx =

∫ 11

b

f(x)dx,

so ∫ 20/3

b

f(x)dx+A =

∫ 11

b

f(x)dx,

where A ≥ 0, so ∫ 20/3

b

f(x)dx ≤
∫ 11

b

f(x)dx.

As b→ 10/3+, the integral
∫ 20/3

b
goes→∞ (as shown just above), and therefore

since
∫ 20/3

b
≤
∫ 11

b
, we also have that

∫ 11

b
→∞. Therefore∫ 11

10/3

f(x)dx =∞.

(You could alternatively compute this integral directly, much like the first one
above, and find its value to be +∞ in that way.)

So one side is −∞, and the other side +∞. So the overall integral does not
exist (we can’t add −∞ with +∞).

2.5. Compute, or show that it does not exist,∫ 1

0

x√
1− x4

dx

(Hint: at some point, make a substitution to make the integrand involve a form

related to trig subs.) Use symmetry to deduce what
∫ 1

−1 is, with the same
integrand.

Solution.
Note

√
1− x4 is continuous over 0 ≤ x ≤ 1, and is > 0 for 0 ≤ x < 1. The

numerator x is continuous everywhere. So f(x) = x/
√

1− x4 is continuous over
[0, 1). As x→ 1−, the numerator x→ 1−, and the denominator

√
1− x4 → 0+,

since x4 → 1−, so 1 − x4 → 0+, so
√

1− x4 → 0+. So as x → 1−, f(x) →
1/0+ = +∞. So we compute the integral as a limit:

= lim
b→1−

∫ b

0

x√
1− x4

dx

Now the integrand invovles the form 1 − x4, which is similar to 1 − u2, a trig
sub form. We would like to arrange that u2 = x4, so to do this we sub u = x2.
This gives du = 2xdx, so xdx = du/2, and note that x is in the numerator of
f(x). Making the sub:

= lim
b→1−

∫ b

x=0

du/2√
1− u2

.

Now when x = 0, u = x2 = 0, and when x = b, u = x2 = b2:

= lim
b→1−

1

2

∫ b2

u=0

1√
1− u2

du
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=
1

2
lim

b→1−
arcsin(u)

∣∣b2
0

=
1

2
lim

b→1−

[
arcsin(b2)− arcsin(0)

]
Now arcsin(0) = α where sin(α) = 0 and −π/2 ≤ α ≤ π/2, so this is α = 0:

=
1

2
lim

b→1−

[
arcsin(b2)− 0

]
=

1

2
lim

b→1−
arcsin(b2)

And as b→ 1−, b2 → 1−, and arcsin is continuous over its domain −1 ≤ x ≤ 1,
so

=
1

2
arcsin(1),

and arcsin(1) = α where sin(α) = 1 and −π/2 ≤ α ≤ π/2, so this is α = π/2:

=
1

2
π/2

= π/4.

3.(a) Find ∫ 5

4

x3 − x− 3

(x− 3)x3
dx

Solution.
The integrand is rational, and there is no straightforward sub to make, so we
use partial fractions. The degree of the numerator is less than that of the
denominator, so we can go straight to partial fraction form. The denominator
has roots x = 0 with multiplicity 3; and x = 3 with multiplicity 1. So the partial
fraction form is:

x3 − x− 3

(x− 3)x3
=

A

(x− 3)
+
B

x
+
C

x2
+
D

x3
.

Multiplying through by the denominator:

x3 − x− 3 = Ax3 +Bx2(x− 3) + Cx(x− 3) +D(x− 3)

Evaluating at the zeros:
Plugging x = 0 gives:

−3 = A(0) +B(0) + C(0) +D(−3)

So D = 1.
Plugging x = 3 gives:

27− 3− 3 = A(27) +B(0) + C(0) +D(0)

21 = 27A

7 = 9A

A = 7/9.
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Now there are no more zeros to plug in, so we match some coefficients:

x3 − x− 3 = Ax3 +Bx2(x− 3) + Cx(x− 3) +D(x− 3)

x3 − x− 3 = (A+B)x3 + (−3B + C)x2 + (−3C +D)x− 3D

So matching the coefficient of x3:

1 = A+B = (7/9) +B

(since we already found A = 7/9 earlier). So B = 2/9. And matching the x
coefficient:

−1 = −3C +D

−1 = −3C + 1

(since we found D = 1). So −2 = −3C and C = 2/3.
So the integral is ∫ 5

4

A

(x− 3)
+
B

x
+
C

x2
+
D

x3
dx

=

∫ 5

4

A

(x− 3)
dx+

∫ 5

4

B

x
dx+

∫ 5

4

C

x2
dx+

∫ 5

4

D

x3
dx

= A ln(|x− 3|) +B ln(|x|)− Cx−1 − 1

2
Dx−2

∣∣5
4

= A(ln(|5− 3|)− ln(|4− 3|)) +B(ln(|5|)− ln(|4|))− C(
1

5
− 1

4
)− 1

2
D(

1

52
− 1

42
)

= A(ln(2)− ln(1)) +B ln(5/4)− C(−1/20)− 1

2
D(

42 − 52

5242
)

= A ln(2) +B ln(5/4) + C/20− 1

2
D(
−9

5242
)

=
7

9
ln(2) +

2

9
ln(5/4) +

1

30
+

9

2(52)42

=
7

9
ln(2) +

2

9
ln(5/4) +

107

2400

(b) Find ∫ 3

2

x

x3 − 1
dx

Solution.
The “possible rational zeros” theorem tells us that the possible rational zeros of
the denominator x3 − 1 are ± 1

1 , i.e. ±1. Trying x = 1, we see that 13 − 1 = 0,
so x = 1 is a zero of x3 − 1. Factoring with synthetic division leads to:

x3 − 1 = (x− 1)(x2 + x+ 1)

And x2 +x+ 1 is irreducible since the “b2− 4ac” term of the quadratic formula
is 12− 4(1)(1) = −3 < 0. (So the zeros of x2 + x+ 1 are non-real, so it can’t be
factored with real linear factors.) So for x3 − 1, we have one real linear factor
x− 1, with multiplicity 1, and one irreducible quadratic factor x2 + x+ 1, also
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with multiplicity 1 (i.e. (x2 + x+ 1)1 is what appears, not (x2 + x+ 1)2 or any
higher power). Therefore the partial fractions form is

x

(x− 1)(x2 + x+ 1)
=

A

x− 1
+

Bx+ C

x2 + x+ 1

So multiplying through:

x = A(x2 + x+ 1) + (Bx+ C)(x− 1)

So plugging in the zero x = 1:

1 = A(3) + (B(1) + C)(0)

So A = 1/3. Now matching coefficients:

0x2 + 1x+ 0 = (A+B)x2 + (A−B + C)x+ (A− C)

Matching the constant term (i.e. the coefficient of 1):

0 = A− C

So C = 1/3 since A = 1/3. And matching the coefficients of x2:

0 = A+B

So B = −1/3 since A = 1/3.
So the integral is ∫ 3

2

1/3

x− 1
+

(−1/3)x+ (1/3)

x2 + x+ 1
dx

=
1

3

∫ 3

2

1

x− 1
+
−x+ 1

x2 + x+ 1
dx

Note that (x2 + x+ 1)′ = 2x+ 1, so if we separate −x− 1
2 from the numerator

−x+ 1 in the second term, we can easily integrate part of the second term:

=
1

3

[∫ 3

2

1

x− 1
dx+

∫ 3

2

−x+ (− 1
2 + 3

2 )

x2 + x+ 1
dx

]

=
1

3

[
ln(|x− 1|)

∣∣3
2

+

∫ 3

2

−x− 1
2

x2 + x+ 1
dx+

∫ 3

2

3/2

x2 + x+ 1
dx

]
=

1

3

[
ln(|3− 1|)− ln(|2− 1|)− 1

2

∫ 3

2

2x+ 1

x2 + x+ 1
dx+

3

2

∫ 3

2

1

x2 + x+ 1
dx

]
=

1

3

[
ln(2)− ln(1)− 1

2
(ln(|x2 + x+ 1|)

∣∣3
2

+
3

2

∫ 3

2

1

x2 + x+ 1
dx

]
=

1

3

[
ln(2)− 0− 1

2

(
ln(|32 + 3 + 1|)− ln(|22 + 2 + 1|)

)
+

3

2

∫ 3

2

1

(x+ 1
2 )2 − ( 1

2 )2 + 1
dx

]
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(in the last term I’ve just completed the square, which I’m doing so as to convert
the x2 + x+ 1 to a form like u2 + a2, with which we can do a trig sub); subbing
now u = x+ 1

2 in the last term, which gives du = dx:

=
1

3

[
ln(2)− 1

2
(ln(13)− ln(7)) +

3

2

∫ 3

x=2

1

u2 + 3
4

du

]
And when x = 2, u = x + 1

2 = 5
2 , and when x = 3, u = x + 1

2 = 7
2 ; and

converting the remaining integral to the form c/(v2 + 1) with a constant c (in
order to antidifferentiate to c arctan(v)):

=
1

3

[
1

2
(2 ln(2)− ln(13) + ln(7)) +

3

2

∫ 7
2

u= 5
2

1
3
4 ( 4

3u
2 + 1)

du

]

=
1

3

[
1

2
(ln(22)− ln(13) + ln(7)) +

3

2

4

3

∫ 7/2

5/2

1

( 2√
3
u)2 + 1

du

]
Subbing v = 2√

3
u, which gives dv = 2√

3
du:

=
1

3

[
1

2
ln((4/13)(7)) + 2

∫ 7/2

u=5/2

1

v2 + 1

√
3

2
dv

]

=
1

3

[
1

2
ln(28/13) + 2

√
3

2

∫ 7/
√
3

v=5/
√
3

1

v2 + 1
dv

]

=
1

3

[
ln(
√

28/13) +
√

3 arctan(v)
∣∣7/√3

5/
√
3

]
=

1

3

[
ln(
√

28/13) +
√

3(arctan(7/
√

3)− arctan(5/
√

3))
]

4. Let {an}∞n=5 be the sequence with terms

an =

∫ 2n

0

4−x+10dx.

(a) Determine whether limn→∞ an exists, and if so, its value.
(b) How can you write this as an improper integral?

Solution.
(a) Evaluating, with a substitution of u = −x+ 10, which gives du = −dx, one
gets

an =

∫ 2n

x=0

4u(−du)

=

∫ −2n+10

10

4u(−du)

= − 1

ln(4)
4u
∣∣−2n+10

10
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=
1

ln(4)
(410 − 410−2n)

So letting f be the function

f(x) =
1

ln(4)
(410 − 410−2x)

we have an = f(n) for each n. But

lim
x→∞

1

ln(4)
(410 − 410−2x)

=
1

ln(4)

[
( lim
x→∞

410)− lim
x→∞

4104−2x
]

=
1

ln(4)

[
410 − 410 lim

x→∞
(

1

16
)x
]

and as x→∞, (1/16)x → 0, since (1/16) < 1

=
1

ln(4)

[
410 − 410(0)

]
=

1

ln(4)
410.

Therefore, since an = f(n) and limx→∞ f(x) exists, we know limn→∞ an exists
and

lim
n→∞

an = lim
x→∞

f(x) =
1

ln(4)
410.

(b) The limit
lim

n→∞
an = lim

x→∞
f(x) = lim

b→∞
f(b),

as discussed above. But

lim
b→∞

f(b) = lim
b→∞

∫ 2b

0

4−x+10dx

by the same integration calcluation made earlier (although we were assuming
that n was an integer there, since it was the index to an, the same calculation
works for any real number b in place of n). Now as b → ∞, we have 2b → ∞,
and vice versa. So this limit is

lim
b′→∞

∫ b′

0

4−x+10dx

which is the improper integral ∫ ∞
0

4−x+10dx.

(Remark: there are also other possible solutions here.)

9



5. Find ∫ ∞
−∞

ex

e2x + 1
dx

Solution.
We must split the integral into parts so that each part involves at most one
limit. The denominator e2x + 1 > 1 for all x, since e2x > 0, and ex and e2x+1

are both continuous, so the integrand is continuous over (−∞,∞). So we need
only make one split, and we choose x = 0 for this, for convenience.

So the integral is ∫ 0

−∞

ex

e2x + 1
dx+

∫ ∞
0

ex

e2x + 1
dx,

given both sides exist, or both are +∞, or both are −∞.
Left side: ∫ 0

−∞

ex

e2x + 1
dx

= lim
b→−∞

∫ 0

b

ex

e2x + 1
dx

Note the denominator is (ex)2 + 1 = u2 + 1 if u = ex, and we can integrate∫
1

u2+1du, and ex is the numerator. So sub u = ex, which gives du = exdx:

= lim
b→−∞

∫ 0

x=b

du

u2 + 1

= lim
b→−∞

∫ e0

u=eb

1

u2 + 1
du

= lim
b→−∞

arctan(u)
∣∣1
eb

= lim
b→−∞

(arctan(1)− arctan(eb))

Now arctan(1) = α where tan(α) = 1 and −π/2 < α < π/2, which is α = π/4.
And as b→ −∞, eb → 0, and arctan is continuous over its domain (−∞,∞),

and limb→−∞ eb = 0, which is in the domain of arctan, so limb→−∞ arctan(eb) =
arctan(limb→−∞ eb) = arctan(0) = 0 (the last equality since arctan(0) = α
where tan(α) = 0 and −π/2 < α < π/2, which is α = 0).

So
lim

b→−∞
(arctan(1)− arctan(eb))

= π/4− 0 = π/4.

Right side (method 1): ∫ ∞
0

ex

e2x+1
dx

As in the left side,
= lim

b→∞
(arctan(eb)− arctan(1))

And arctan(1) = π/4 as discussed above, and as b → ∞, eb → ∞, and as
x → ∞, arctan(x) → π/2, since arctan has a horizontal asymptote at y = π/2
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as x → ∞, since the graph of y = tan(x), over the interval −π/2 < x < π/2,
reflects to the graph of arctan, and tan(x)→∞ as x→ π/2−. So

= π/2− π/4 = π/4.

Right side (method 2): Note that

f(x) =
ex

e2x + 1
=

ex/ex

e2x/ex + 1/ex
=

1

ex + e−x
,

and from the expression on the right we see f is even symmetric about x = 0
(i.e. f(x) = f(−x) where f(x) = 1/(ex + e−x)). Therefore∫ 0

−∞
f(x)dx =

∫ ∞
0

f(x)dx

and therefore

π/4 =

∫ ∞
0

f(x)dx

since we already computed the left side was π/4.
So both sides of the integral exist, so the overall integral exists, and equals

their sum: ∫ ∞
−∞

ex

e2x + 1
dx = π/4 + π/4 = π/2.

6. Find ∫ ∞
10

1

x ln(x3)
dx

Solution.

= lim
b→∞

∫ b

10

1

x ln(x3)
dx

Since ln(x3) = 3 ln(x) this is

=
1

3
lim
b→∞

∫ b

10

1

x

1

ln(x)
dx

Now subbing u = ln(x) gives du = dx/x, and 1/x multiplies the 1/ ln(x) term:

=
1

3
lim
b→∞

∫ ln(b)

u=ln(10)

1

u
du

=
1

3
lim
b→∞

ln(|u|)
∣∣ln(b)
ln(10)

=
1

3
lim
b→∞

[ln(| ln(b)|)− ln(| ln(10)|)]

Now as b → ∞, ln(b) → ∞, so | ln(b)| → ∞, and as x → ∞, ln(x) → ∞, so as
b → ∞, we have ln(| ln(b)|) → ∞. And ln(10) > 0 so ln(| ln(10)|) = ln(ln(10))
is just a constant. So we have

=
1

3
(∞− ln(ln(10))) =∞.
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So the integral does not exist (it diverges) but it diverges to = +∞.

7.(a) Given the recurrence a1 = 3, an+1 = an−1
an

, find the first eight terms of
the sequence. Does limn→∞ an exist? Explain.
Solution.

a1 = 3

Using the recurrence formula with n = 1 gives

a1+1 =
a1 − 1

a1

a2 =
3− 1

3
=

2

3
.

Now using the recurrence with n = 2 gives

a3 =
a2 − 1

a2
=

(2/3)− 1

2/3
=
−1/3

2/3
= −1

2

With n = 3 gives:

a4 =
− 1

2 − 1

− 1
2

=
−3/2

− 1
2

= 3

With n = 4 gives:

a5 =
3− 1

3
=

2

3
.

With n = 5 gives:

a6 =
(2/3)− 1

2/3
= −1

2
.

Notice that we are now just repeating the terms we started with: a4 = a1 = 3
and a5 = a2 = 2/3 and a6 = a3 = − 1

2 . Since an+1 depends only on an, this
means that if n ≥ 4 and an = an−3 (as is the case with a4 = a1) then

an+1 =
an − 1

an
=
an−3 − 1

an−3
= an−2

(where the first equality is the recurrence formula, the second is because an =
an−3, and the third is the recurrence formula when “n” is replaced by “n− 3”,
which is correct for n ≥ 4, since the recurrence holds for all n ≥ 1.) So we
deduce that

an+1 = an−2 = a(n+1)−3.

Then from the above line we can likewise deduce that

an+2 = a(n+2)−3,

and so on. So for all n ≥ 4 we have an = an−3, so the sequence just keeps
repeating the same 3 terms:

3, 2/3,−1

2
, 3, 2/3,−1

2
, 3, 2/3, . . .

So the first 8 terms are as displayed here.
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Since the sequence just keeps repeating 3 distinct terms, it never converges
on any particular value, so the limit does not exist.

(b) Find a recurrence, and a general formula for an, for the sequence

4, 7, 12, 19, 28, 39, . . . ,

assuming that the first index is n = 1. (Hint: for the general formula, try
subtracting 3 from every term.)
Solution.
Note that

a1 = 4,

a2 = 7 = 4 + 3 = a1 + 3,

a3 = 12 = 7 + 5 = a2 + 5,

a4 = 19 = 12 + 7 = a3 + 7,

a5 = 28 = 19 + 9 = a4 + 9,

a6 = 39 = 28 + 11 = a5 + 11.

Note this is
a1 = 4,

a1+1 = a1 + (2(1) + 1)

a2+1 = a2 + (2(2) + 1)

. . .

a5+1 = a5 + (2(5) + 1)

So we have a recurrence
a1 = 4

an+1 = an + (2n+ 1).

(There are also other possible recurrences you can use.)
For the explicit formula, following the hint:

a1 − 3 = 1

a2 − 3 = 4

a3 − 3 = 9

a4 − 3 = 16

a5 − 3 = 25

a6 − 3 = 36

Notice that the numbers on the right are just the first 6 perfect squares. So we
have:

a1 = 12 + 3

a2 = 22 + 3

a3 = 32 + 3

13



and so on,...
a6 = 62 + 3

So we have a formula
an = n2 + 3.

(Checking this agrees with the recurrence:

an+1 = (n+ 1)2 + 3

= n2 + 2n+ 1 + 3

= (n2 + 3) + 2n+ 1 = an + (2n+ 1),

which agrees.)
(c) Find a formula for an, for the sequence

4, 5 +
1

2
, 4 +

3

4
, 5 +

1

8
, 4 +

15

16
, . . .

Based on your formula, does the limit of the sequence exist? Explain.
Solution.
Notice the sequence is

5− 1

1
, 5 +

1

2
, 5− 1

4
, 5 +

1

8
, 5− 1

16
, . . .

5− (−1)0

20
, 5− (−1)1

21
, 5− (−1)2

22
, 5− (−1)3

23
, 5− (−1)4

24
, . . .

So starting with index n = 0 we have

an = 5− (−1)n

2n

or

an = 5− (
−1

2
)n

Note that (−1)n = cos(πn), so

an = 5− cos(πn)

2n
.

Let

f(x) = 5− cos(πx)

2x
.

Then f is a function with domain (−∞,∞), an = f(n) for integers n ≥ 0 and

lim
x→∞

f(x) = 5− lim
x→∞

cos(πx)

2x
.

We can use the Squeeze Theorem to compute the remaining limit. For all x, we
have −1 ≤ cos(πx) ≤ 1, and 2x > 0, so

− 1

2x
≤ cos(πx)

2x
≤ 1

2x
,

14



and

lim
x→∞

− 1

2x
= 0 = lim

x→∞

1

2x
= 0

So by the Squeeze Theorem,

lim
x→∞

cos(πx)

2x
= 0.

So
lim
x→∞

f(x) = 5.

Therefore (since this limit exists, and an = f(n)), the limit limn→∞ an also
exists. (And it equals

lim
n→∞

an = lim
x→∞

f(x) = 5.

though you weren’t actually asked for its value.)

8.(a) If the sequence a0, a1, a2, . . . is geometric and a1 = 5 and a3 = 15, what
can you say about the ratio r of the sequence? What is the value of a101?
Solution.
Since the sequence is geometric, letting r be the ratio of the sequence (a non-zero
constant), we have a constant a 6= 0 such that

an = arn

for all n ≥ 0. Since
5 = a1 = ar1 = ar

and
15 = a3 = ar3,

dividing the 2nd equation here by the first,

15/5 = ar3/(ar)

3 = r2

So r = ±
√

3. Since we’re not given any further information, it could be either
way: if r =

√
3 then 5 = a1 = ar = a

√
3, so a = 5/

√
3. The sequence

an = (5/
√

3)
√

3
n
, n ≥ 0

is geometric, has first index n = 0, and satisfies the requirements that a1 = 5
and a3 = 15.

If r = −
√

3, then 5 = a1 = ar = a(−
√

3), so a = −5/
√

3, so

an = (−5/
√

3)(−
√

3)n, n ≥ 0

also gives a geometric sequence, has first index n = 0, and satisfies the require-
ments.

So r = ±
√

3.
We have

a101 = ar101,
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and
5 = a1 = ar.

So
a101/5 = a101/a1 = ar101/(ar) = r100 =

√
3
100

= 350.

So
a101/5 = 350

a101 = 5(350).

(Alternatively if you use either of the possible formulas for an derived above,
and compute a101 from these, both give a101 = 5(350), so this is the only possible
value for a101.)

(b) If the sequence a0, a1, a2, . . . is such that a1 = 5 and a3 = 15, what can
you say about a101?
Solution.
All we know is that a101 is some number: given any number x, the sequence

x, 5, x, 15, x, x, x, x, x, x, x, x, x, . . .

(starting with index n = 0, and an = x for all n ≥ 4) has first index n = 0,
and a1 = 5, a3 = 15, and a101 = x. So the fact that a1 = 5 and a3 = 15
and the indexing starts at n = 0 does not restrict the possible values of a101.
(In part (a), the sequence was assumed to be geometric, which puts a strong
restriction on the possibilities for the sequence. But in part (b) there is no such
assumption.)

9. Suppose {cn}∞n=3 is a sequence such that limn→∞ cn = 6, and {dn}∞n=3

has limit 3. In problems (a*), (a) and (b), compute the limit of the sequence, if
possible, where in (a*) the sequence has the terms en shown, in (a), the terms
an and in (b), the terms bn. Do part (c).

(a*) The sequence with terms

en = nd3n −
n2d3n − dn
n+ 1

, n ≥ 3

(a) The sequence with terms

an = ndn −
(n2 − 5n+ 1)cn

2n
, n ≥ 3

(b) The sequence with terms

bn = n
1
n3 , n ≥ 1

(c) Determine whether
∞∑

n=3

dn/cn

converges.

Solution.
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(a*) We have

en = nd3n −
n2d3n − dn
n+ 1

,

so now we can’t use the “subtraction” limit law, since one can show that

limn→∞ nd3n = ∞(33) = ∞ and limn→∞
n2d3

n−dn

n+1 = ∞, so we’d get ∞ −∞,
which is not valid (this is an indeterminate form). So we need to simplify first:

lim
n→∞

en = lim
n→∞

nd3n −
n2d3n − dn
n+ 1

= lim
n→∞

n(n+ 1)d3n − n2d3n + dn
n+ 1

= lim
n→∞

nd3n + dn
n+ 1

= lim
n→∞

n

n+ 1
d3n +

dn
n+ 1

And applying limit laws (which will apply as long as the various limits end up
existing):

= ( lim
n→∞

n

n+ 1
) lim
n→∞

d3n + lim
n→∞

dn
n+ 1

Applying more limit laws:

= 1( lim
n→∞

dn)3 + lim
n→∞

dn
n+ 1

= (3)3 + lim
n→∞

dn
n+ 1

And as n→∞, dn → 3 and n+ 1→∞, so the remaining limit has form 3/∞
which is a determinate form, and gives a result of 0, so limn→∞(dn/(n + 1))
exists and = 0:

= 27 + 0

(Since the various limits existed at the end, the earlier limits also exist, so all
the limit laws do in fact apply.) (Not to say that limn→∞ n + 1 exists, but
just that limn→∞ dn/(n + 1) = 0 exists and limn→∞ n/(n + 1) = 1 exists and
limn→∞ d3n = 27 exists.)

So
lim
n→∞

en = 27.

(a) It is not possible to compute the limit. For first note that

an = ndn −
(n2 − 5n+ 1)cn

2n

=
2n2dn − cnn2 + (5n− 1)cn

2n

=
n2(2dn − cn)

2n
+

(5n− 1)cn
2n

= n
(2dn − cn)

2
− cn

2n
+

5cn
2
.
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So
lim
n→∞

an

= lim
n→∞

n
(2dn − cn)

2
− cn

2n
+

5cn
2

And using some limit laws:

= ( lim
n→∞

n
(2dn − cn)

2
)− ( lim

n→∞
cn)( lim

n→∞

1

2n
) +

5

2
lim
n→∞

cn

= ( lim
n→∞

n
(2dn − cn)

2
)− 6( lim

n→∞

1

2n
) +

5

2
(6)

Now the function f(x) = 1/(2x) satisfies 1/(2n) = f(n) for all n ≥ 3, and
limx→∞ f(x) = 0, so limn→∞(1/(2n)) = 0 also. So we have the overall limit is

lim
n→∞

n
2dn − cn

2
− 6(0) + 15

But note that limn→∞(2dn − cn)/2 = limn→∞ dn − 1
2 limn→∞ cn (from some

limit laws), which = 3 − 1
2 (6) = 0. And limn→∞ n = ∞. So the remaining

limit has form ∞ · 0, which is indeterminate. So we would need to know more
information about the sequences cn and dn in order to compute the limit.

(E.g., it’s possible that dn = 3 and cn = 6 for all n (since limn→∞ 3 = 3 and
limn→∞ 6 = 6); then 2dn−cn = 0 for all n, in which case the overall limit would
be (limn→∞ n(2dn − cn)/2) + 15 = 0 + 15 = 15. But on the other hand, it’s
also possible that dn = 3 and cn = 6 + (1/n) for all n, in which case the overall
limit would be (limn→∞ n(2dn − cn)/2) + 15 = (limn→∞ n(−1/(2n))) + 15 =
(limn→∞− 1

2 ) + 15 = 14.5. And with other sequences cn, dn (which converge to
6 and 3 respectively), you could also have any other limit, or the limit might
not exist.)

(b) Here we compute limn→∞ n1/n
3

. Let

f(x) = x1/x
3

.

Then for n ≥ 1, bn = f(n). So if limx→∞ f(x) exists, then it equals the limit
we need to find.

So consider
lim
x→∞

x1/x
3

.

As x→∞, the base x→∞, and the exponent 1/x3 → 0, so this limit has form
∞0, indeterminate. So,

lim
x→∞

f(x)

= lim
x→∞

eln(x)/x
3

= eL

where

L = lim
x→∞

ln(x)

x3
.
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As x→∞, ln(x)→∞ and x3 →∞, so this limit has form∞/∞, indeterminate,
but L’Hopital’s rule is valid for it. So

= lim
x→∞

(ln(x))′

(x3)′

= lim
x→∞

1/x

3x2

= lim
x→∞

1

3x3
= 0.

So L = 0, so (limx→∞ f(x)) = eL = e0 = 1. So this limit exists, so the original
limit limn→∞ bn also exists and

lim
n→∞

bn = lim
x→∞

f(x) = 1.

(c)
∞∑

n=3

dn/cn

Since the terms dn → 3 and cn → 6, we have

lim
n→∞

dn
cn

=
limn→∞ dn
limn→∞ cn

=
3

6
=

1

2
.

So in the series, for large values of n, the term dn/cn is very close to 1/2, so it
ends up adding term after term, with the terms very close to 1

2 .
This implies that the series diverges: for large enough values of n, dn/cn >

1
4

(since dn/cn → 1
2 ). Let’s say that N is some fixed integer such that for all

n > N , we have dn/cn > 1/4. Then the series is

∞∑
n=3

dn
cn

=
d3
c3

+
d4
c4

+ . . .+
dN
cN

+
dN+1

cN+1
+
dN+2

cN+2
+ . . .

When M > N , the partial sum (BS)M has the form

(BS)M =

M∑
n=3

dn
cn

=
d3
c3

+
d4
c4

+ . . .+
dN
cN

+
dN+1

cN+1
+
dN+2

cN+2
+ . . .+

dM
cM

(recall that (BS)M is the partial sum given by making the upper bound equal
M ; this is different to SM , the notation in the book; SM is the sum of the first
M terms).

= A+
dN+1

cN+1
+
dN+2

cN+2
+ . . .+

dM
cM

where A =
∑N

n=3
dn

cn
. But since n = N + 1 > N , our choice of N implies

dN+1

cN+1
> 1

4 . Similarly dN+2

cN+2
> 1

4 , and so on, through dM

cM
> 1

4 . So

(BS)M > A+
1

4
+

1

4
+ . . .+

1

4
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where there is a “ 1
4” term for each n = N + 1, . . . ,M . So there are M − N

terms “ 1
4”. So

(BS)M > A+ (M −N)
1

4

Note that the term A is just the sum of the terms d3

c3
+ . . .+ dN

cN
, and N was a

fixed constant, independent of the upper index M . So

(BS)M > (A− N

4
) +

M

4
,

and the term A− N
4 = B is a constant independent of M .

(BS)M > B +
M

4
.

But then as M →∞, M/4→∞, and B is a constant, so B+ (M/4)→∞ also.
Since (BS)M > B +M/4, we get (BS)M →∞ also:

lim
M→∞

(BS)M =∞,

and
∞∑

n=3

dn
cn

= lim
M→∞

(BS)M =∞.

So the series diverges (to +∞).

(Remark: A similar argument shows that if limn→∞ an = L 6= 0, then∑
n→∞ an diverges (to +∞ if L > 0, or to −∞ if L < 0). In fact, if the series∑∞
n=k an converges, then the limit of the terms an is 0: limn→∞ an = 0. But

given that limn→∞ an = 0, you cannot conclude that
∑∞

n=k an converges; e.g.
the series

∑∞
n=1

1
n diverges, to +∞, even though the terms 1

n → 0 as n→∞.)

10.(a) Find the first four partial sums for the series

∞∑
n=0

1

7 · 3n

(b) Evaluate the sum
1,000,000∑

n=0

1

7 · 3n
,

simplifying fully.
(c) Does the series in (a) converge? If so, find the value it converges to.
(d) Repeat (c) for

∞∑
n=0

(−7/4)n(3/4)n

(e) Repeat (c) for
∞∑

n=0

500(−7/4)n(3/4)2n
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Solution.
(a) The first four partial sums are: First:

0∑
n=0

1

7 · 3n

=
1

7 · 30
=

1

7
.

(Note: The above partial sum is (BS)0 (the 0-bounded partial sum, i.e. the
partial sum with upper bound 0; the somewhat difficult to read symbols “BS”
are “B” and “S” for “bounded sum”), or in the other terminology, is S1 (the
1st partial sum), i.e. the sum of first term. Since the series is summing starting

from index n = 0, summing just one term means we get
∑0

n=0, which has upper
bound 0, which gives (BS)0. So when the series starts summing from index
n = 0, we have S1 = (BS)0.)

Second: (S2 = sum of first two terms, which since our series starts summing

at n = 0, this is
∑1

n=0, which has upper bound 1, i.e. giving (BS)1.)

1∑
n=0

1

7 · 3n

=
1

7 · 30
+

1

7 · 31

=
1

7
+

1

21
.

Third: (S3 = (BS)2 for this series):

2∑
n=0

1

7 · 3n

=
1

7 · 30
+

1

7 · 31
+

1

7 · 32

=
1

7
+

1

21
+

1

63

Fourth: (S4 = (BS)3 for this series):

3∑
n=0

1

7 · 3n

=
1

7 · 30
+

1

7 · 31
+

1

7 · 32
+

1

7 · 33

=
1

7
+

1

21
+

1

63
+

1

189

(Remark: in general for a series summing from lower bound n = 0, we have
“sum of first n terms” = Sn = “sum with upper bound n − 1” = (BS)n−1.
If the series instead starts summing from lower bound n = 1, we just have
Sn = (BS)n.)
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(b)
1,000,000∑

n=0

1

7 · 3n
,

=
1

7(30)
+

1

7(31)
+ . . .+

1

7(31,000,000)
,

but we need to simplify fully, so we need another way. We use the fact that for
a geometric sequence with first term a and ratio r, the sum of the first M terms
a+ ar + ar2 + . . .+ arM−1 is

M−1∑
n=0

arn = a
1− rM

1− r

Our series is
∞∑

n=0

an

where

an =
1

7(3n)
, n ≥ 0.

We can write this like

an =
1

7

1

3n
=

1

7
(
1

3
)n = arn, n ≥ 0.

where a = 1/7 and r = 1/3. This is in the correct form for a geometric sequence,
and our sequence has first index n = 0. The first term is then a0 = (1/7), and
ratio r = (1/3). So then

1,000,000∑
n=0

an

is the sum of the first M = 1, 000, 001 terms is

1,000,000∑
n=0

an = a
1− r1,000,001

1− r
=

1

7
(
1− (1/3)1,000,001

2/3
)

=
3(1− (1/3)1,000,001)

14
.

(Note that since (1/3)1,000,001 is very close to 0, this sum is almost 3/14.)
(c) Yes, since it is a geometric series with ratio r = 1/3, so the ratio r satisfies

|r| < 1. So the series conveges, to

a
1

1− r
,

where a is the first term.

=
1

7

1

1− (1/3)

=
1

7

3

2
=

3

14
.
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(The calculations from part (b) can be used to verify the formula a/(1−r) here:

∞∑
n=0

an

= lim
M→∞

M∑
n=0

an

= lim
M→∞

M∑
n=0

arn

= lim
M→∞

M∑
n=0

1

7
(
1

3
)n

and the sum is the sum of the first M + 1 terms, starting at first term a = 1/7,
and ratio r = 1/3, so this is

= lim
M→∞

a
1− rM+2

1− r

= lim
M→∞

1

7

1− ( 1
3 )M+2

1− 1
3

= lim
M→∞

3(1− ( 1
3 )M+2)

14

And as M →∞, the term (1/3)M+2 → 0, resulting in

=
3(1− 0)

14
=

3

14
.

(d)
∞∑

n=0

(−7/4)n(3/4)n

=

∞∑
n=0

(
−21

16
)n =

∞∑
n=0

rn,

where r = −21/16. This is a geometric series with ratio r = −21/16. Since the
ratio r satifies |r| ≥ 1, the series does not converge.

(e)
∞∑

n=0

500(−7/4)n(3/4)2n

=

∞∑
n=0

500(
−7

4

9

16
)n

=

∞∑
n=0

500(
−63

64
)n

=

∞∑
n=0

arn
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where a = 500 and r = −63/64. This is a geometric series, with ratio r =
−63/64, so the ratio r satisfies |r| < 1, so the series converges; note the first
term is a = 500 (the first index is when n = 0) so the series converges to

a
1

1− r
= 500(

1

1− (−63/64)
) =

500

127/64
=

500(64)

127
.
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