Math 1720 Homework 12, due Friday April 20.
Explain all answers and show all calculations.
8.3: 49, 52
8.4: 30(note), 33, 50, 51(note), 63
8.7: $6,7,9,10,14,15,19,52$; possibly a couple more Monday.

Problem A

Notes:
8.4: 30: This has the following partial fraction form:

$$
\frac{1 / 4}{x}+\frac{(3 / 4) x-(5 / 4)}{x^{2}+5 x+8}
$$

If you already computed the above form on the previous homework, you may just compute the integral from the form, there's no need to recompute the partial fraction form.
8.4: 51: Don't actually compute the integral; just do the long division and rewrite the integral in the form

$$
\int Q(x)+\frac{r(x)}{q(x)} d x
$$

with polynomials $Q(x), r(x), q(x)$, with the degree of r strictly less than the degree of q.

Problem A: Find the following integrals.
(a)

$$
\int_{-\infty}^{\infty}|x| e^{-x^{2}} d x
$$

(Hint: by definition, you need to break the integral into the sum of two integrals, by choosing some real number c, and taking one interval over $-\infty<x \leq c$ and one over $c \leq x<\infty$. Try to choose a convenient value for c.)
(b)

$$
\int_{-\infty}^{\infty} \frac{x^{3}+1}{x^{2}} d x
$$

(c)

$$
\int_{-\infty}^{\infty} \frac{x}{\left(x^{2}+1\right)\left(x^{2}+x+1\right)} d x
$$

(Hint: Use partial fractions.)

