Math 1720 Homework 1A, due Wednesday Jan 25 More homework to be posted Friday.

1. Use a left Riemann sum with $\Delta t=0.5$ to estimate $\ln (3)$. Is the estimate an overestimate or underestimate?
2. Use a right Riemann sum with $\Delta t=1$ to estimate $\ln (16)$. Is the estimate an overestimate or underestimate?
3. In class on Friday I (will/did) use Riemann sums to show that

$$
\ln (4)>\frac{2}{2}
$$

and that

$$
\ln (8)>\frac{3}{2}
$$

Use your calculations from problem 2 to similarly show that

$$
\begin{gathered}
\ln (16)>\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+\frac{1}{8}+ \\
+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}+\frac{1}{16}
\end{gathered}
$$

and therefore that $\ln (16)>\frac{4}{2}$.
Use the same method to show that $\ln (32)>\frac{5}{2}$.
(In general this method can be used to show that $\ln \left(2^{n}\right)>\frac{n}{2}$. As $n \rightarrow \infty$, both $2^{n} \rightarrow \infty$ and $n / 2 \rightarrow \infty$. Since \ln is an increasing function, this implies $\lim _{x \rightarrow \infty} \ln (x)=\infty$.)
4. Compute $\ln ^{\prime}(12)$ and $\ln ^{\prime \prime}(12)$.

