Math 1720 Homework 3, due Friday Feb 10
Explain all answers and show all calculations.
Note: for the starred problems, see the modifications in the notes below. The lettered problems A, B, C are given below.
7.1: $15^{*}, 18^{*}, \mathrm{~A}, 21,26,27,28^{*}, 30,31,33,36,39, \mathrm{~B}$; (C is optional.)

Notes:
15^{*} : also graph f and f^{-1} on the same set of axes, and make sure the graphs have the correct symmetry with one another.

18*: Also find the inverse over the interval $x \leq 0$. For each of the intervals $(x \geq 0$ and $x \leq 0)$ also find the domain and range of the inverse for that interval.

28*: Also do this problem with the interval $x<3$. For each of the intervals $(x<3$ and $x>3)$ also find the domain and range of the inverse for that interval.

Problems A, B, C:
A. Find the longest intervals over which

$$
f(x)=x^{2}+2 x-8
$$

is 1-1 (one-to-one). Find the range of f over each of these intervals. Find the inverse of f over each of these intervals, and also find the inverse's domain and range.
B. Suppose f is differentiable and 1-1 and has domain $(0, \infty)$ and range $(-\infty, 10)$. Let f^{-1} be the inverse of f over D. Suppose that all the following equations are true:

- $f(3)=6$ and $f^{\prime}(3)=-0.5$
- $f(4)=5$ and $f^{\prime}(4)=-1.5$
- $f(5)=3$ and $f^{\prime}(5)=-2$
- $f(6)=2$ and $f^{\prime}(6)=0$
(a) How do we know f^{-1} exists? Find the domain and range of f^{-1}.
(b) Is f increasing over $(0, \infty)$? Is f decreasing over $(0, \infty)$? Or is there insufficient information to determine this?
(c) Do you have enough information to find the equation for the tangent to the graph of $y=f^{-1}(x)$ at:
(i) $x=4$?
(ii) $x=3$?

If so, find the equation; if not, explain why not.
(d) Is f^{-1} differentiable at $x=2$? (hint: work out the behaviour of the graph there.)

C (not required). Consider the points $P=(a, b)$ and $Q=(b, a)$ in the plane. Let R be the point of intersection between the line $P Q$ and the line $y=x$. Show that $R=\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$, and that the distance from P to R equals the distance from Q to R. (So combined with what we showed in class Friday, that $P Q$ is perpendicular to $y=x$, we get that P and Q are mirror images of one another in the "mirror" line $y=x$.)

