Math 1720 Homework 3, due Friday Feb 10
Explain all answers and show all calculations.

Problem 7.1:18*:
Find the inverse of $f(x)=x^{2}+4$ over each of the intervals $x \geq 0$, and $x \leq 0$.
Verify the formulas $f\left(f^{-1}(x)\right)=x$ (x in the domain of the inverse) and $f^{-1}(f(x))=$ x ($x \geq 0$ or $x \leq 0$ accordingly) for each of the intervals.
Find the domain and range of the inverse for each of the intervals.

Solution.
(Note that graphing $y=x^{2}+4$, it's just the regular parabola for $y=x^{2}$, shifted upward vertically by 4 units. So by the HLT, it is $1-1$ over $(-\infty, 0]$ and over $[0, \infty)$ (and in fact not 1-1 over any larger interval, also by the HLT, using the graph). So f does indeed have an inverse over each of these intervals.)

For any numbers x, y we have:

$$
y=x^{2}+4
$$

iff $\left(\right.$ since $\left.x^{2} \geq 0\right)$:

$$
y=x^{2}+4, \quad y \geq 4
$$

iff

$$
y-4=x^{2}, \quad y-4 \geq 0
$$

iff

$$
\sqrt{y-4}=\sqrt{x^{2}}, \quad y-4 \geq 0
$$

iff

$$
\sqrt{y-4}=|x|, \quad y-4 \geq 0
$$

So for the interval $D=[0, \infty)$, we have $x \geq 0$ so $x=|x|$ so $y=x^{2}+4$ iff

$$
\sqrt{y-4}=x, \quad y \geq 4
$$

Let g be the inverse of f over D. From the line above, the formula for g is

$$
g(x)=\sqrt{x-4}
$$

The range of g is $D=[0, \infty)$. The domain of g is the range of f over D. Since $f(x)=x^{2}+4$, its graph is just the regular parabola ($y=x^{2}$) shifted up vertically by 4 units. So its range over $0 \leq x<\infty$ is $4 \leq y<\infty$, i.e. the interval $[4, \infty)$. Thus the domain of g is $[4, \infty)$.

For the interval $D_{2}=(-\infty, 0]$, we have $x \leq 0$ so $-x=|x|$ so $y=x^{2}+4$ iff

$$
\sqrt{y-4}=-x, \quad y \geq 4
$$

iff

$$
-\sqrt{y-4}=x, \quad y \geq 4
$$

Let h be the inverse of f over D_{2}. From the line above, the formula for h is

$$
h(x)=-\sqrt{x-4}
$$

The range of h is $D_{2}=(-\infty, 0]$. The domain of g is the range of f over D_{2}, which as in the previous case, is $[4, \infty)$.
(b) To verify the cancellation formulas: For $x \geq 0$, the inverse is g. We have

$$
g(f(x))=\sqrt{f(x)-4}=\sqrt{x^{2}+4-4}=\sqrt{x^{2}}=|x|=x
$$

the last equation since $x \geq 0$. And for x in the domain of g, i.e. $x \geq 4$,

$$
f(g(x))=g(x)^{2}+4=\sqrt{x-4}^{2}+4=(x-4)+4=x
$$

For $x \leq 0$, the inverse is h. We have

$$
h(f(x))=-\sqrt{f(x)-4}=-\sqrt{x^{2}+4-4}=-\sqrt{x^{2}}=-|x|=x
$$

the last equation since $x \leq 0$. And for x in the domain of h, i.e. $x \geq 4$,

$$
f(h(x))=h(x)^{2}+4=(-\sqrt{x-4})^{2}+4=(x-4)+4=x .
$$

A. Find the longest intervals over which

$$
f(x)=x^{2}+2 x-8
$$

is 1-1 (one-to-one). Find the range of f over each of these intervals. Find the inverse of f over each of these intervals, and also find the inverse's domain and range.

Solution.
Since

$$
f^{\prime}(x)=2 x+2
$$

we have

$$
f^{\prime}(x)=0
$$

iff

$$
2 x+2=0
$$

iff

$$
x=-1
$$

And f^{\prime} is continuous and is a linear function with positive slope, so $f^{\prime}(x)>0$ for $x>-1$ and $f^{\prime}(x)<0$ for $x<-1$. Also f is continuous.

So f is increasing over the interval $[-1, \infty)$. And f is decreasing over the interval $(-\infty,-1]$.

And since f is also continuous, we have that f is $1-1$ over these intervals, and these are the largest such intervals.
(You could also have sketched the graph and used the H.L.T. for this part.)
So we know that f has an inverse over the interval $(-\infty,-1]$, and also over the interval $[-1, \infty)$.

Ranges: We know f has a local and absolute min at $x=-1$ (since f is continuous and using where f is inc/decreasing). So this is $f(-1)=(-1)^{2}+$
$2(-1)+8=-9$. And over $[-1, \infty), f$ is increasing, $\lim _{x \rightarrow \infty} f(x)=\infty$, and f is continuous, so the range of f over this interval is $[-9, \infty)$.

Similarly, the range of f over the interval $(-\infty,-1]$ is also $[-9, \infty)$.
Inverses: for any numbers x, y we have

$$
y=x^{2}+2 x-8
$$

iff

$$
0=x^{2}+2 x-8-y
$$

iff (by the quad formula)

$$
x=\frac{-2 \pm \sqrt{2^{2}-4(1)(-8-y)}}{2(1)}
$$

iff

$$
x=\frac{-2 \pm \sqrt{4+32+4 y}}{2}
$$

iff

$$
x=\frac{-2 \pm \sqrt{4(9+y)}}{2}
$$

iff

$$
x=\frac{-2 \pm 2 \sqrt{9+y}}{2}
$$

iff

$$
x=-1 \pm \sqrt{9+y}
$$

Now for the interval $[-1, \infty)$, i.e. $x \geq-1$, we therefore have $y=x^{2}+2 x-8$ iff

$$
x=-1+\sqrt{9+y}
$$

(since $\sqrt{9+y} \geq 0$). Now let g be the inverse of f over $[-1, \infty)$. Then the range of g is $[-1, \infty)$ and the domain of g is f 's range over this interval, i.e. $[-9, \infty)$. So (using the calculation above), the formula for g is

$$
g(x)=-1+\sqrt{9+x}, \quad x \geq-9
$$

Similarly, for the interval $\left(-\infty,-1\right.$], i.e. $x \leq-1$, we have $y=x^{2}+2 x-8$ iff

$$
x=-1-\sqrt{9+y} .
$$

Now let h be the inverse for f over $(-\infty,-1]$. Then the range of h is $(-\infty,-1]$, and the domain of h is f 's range over this interval, i.e. $[-9, \infty$). So (using the calculation above), the formula for h is

$$
h(x)=-1-\sqrt{9+x}, \quad x \geq-9
$$

I have found the domain, range of the two inverses already above.

