Math 1720 Homework 6, due Friday Mar 9.
Explain all answers and show all calculations.
(Notation: I've been using arccos, arcsin, etc, for the inverse trig functions. The book mostly uses $\cos ^{-1}, \sin ^{-1}$, etc, but these are the same functions, i.e. $\cos ^{-1}=\arccos$, etc. I just prefer the former notation because it removes the confusion with power notation. That is, we write $\cos ^{2}(x)$ to denote $(\cos (x))^{2}$. This suggests that $\cos ^{-1}(x)$ might denote $(\cos (x))^{-1}$, but conventionally it does not.)

Problems, in suggested order. The problems (n) displayed in parentheses are just suggested, not for submission. Problems A - E are below. We'll do some related problems in class on Monday.
7.5: (11), A, 12, 15, B, 19, (22), 27, (30), (34), 37, (44), 48, 52, 53, 92(note), C, 70, 71, 67, D.

Note: problem 92(a) should be done using the same general method we used in class to find $\frac{d}{d x}(\arcsin (x))$.

Problem A. Find, if possible,

$$
\cos ^{-1}(-\sqrt{3} / 2)
$$

Problem B. Find the following, where possible.

$$
\begin{gathered}
\sin ^{-1}(\sin (7 \pi / 6)) \\
\tan ^{-1}(-1 / \sqrt{3})
\end{gathered}
$$

Problem C. Show that

$$
\frac{d}{d x}(\arctan (x))=\frac{1}{1+x^{2}}
$$

by the same general method as for problem 92(a). (As part of this, you will need to simplify $\sec (\arctan (x))$.)

Problem D. (i) Find

$$
\int \frac{x}{\sqrt{1-x^{4}}} d x
$$

(Hint: use a substitution to convert the integrand to a form that's integrable using an inverse trig function.)
(ii) Find

$$
\int_{1}^{3} \frac{1}{(1+x) \sqrt{x}} d x
$$

