Math 1720 Midterm 1 Review Problems
(Section 7.4 not included in this review, but it is examinable for the midterm.)
0.
(a) Find

$$
\log _{27}(9)
$$

(b) Find all solutions to the equation

$$
\ln (2-x)+\ln (5-x)=2 \ln (5)
$$

(c) Find all solutions to the equation

$$
e^{x^{3}}=6^{x}
$$

1. 

(a) Find and simplify

$$
\int_{-1}^{1} 6^{2 x} d x
$$

(b) Find and simplify

$$
\int_{3}^{10} \frac{5}{2-x} d x
$$

(c) Find

$$
\int_{0}^{\pi / 2} e^{3 \sin (x)} \cos (x) d x
$$

(d) Find

$$
\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x
$$

2. 

(a) Find

$$
\frac{d}{d x}\left(\frac{x^{3}}{\ln \left(x^{3}\right)}\right)
$$

(b) Find

$$
\frac{d}{d x}\left(\sqrt{x}^{\sqrt{x}}\right)
$$

(c) Let $a=\left(e^{13}+6 / \pi\right)$. Find

$$
\frac{d}{d x}\left(a^{x} x^{\ln (a)}\right)
$$

3. Let $f(x)=\sqrt{x^{6}-4}$. Find the longest intervals over which $f$ has an inverse, and find the formula for the inverse over each such interval.
4. Let $f(x)=e^{-x^{2}}$. (a) Does $f$ have an inverse over the interval $(-2,5)$ ? (b) Find the formula for the inverse of $f$ over the interval $D=[5,10]$, and find the domain and range of the inverse.
5. Suppose that $f$ is a differentiable function, and that $f$ is one-to-one, and

- $f(2)=4 ; f^{\prime}(2)=-1$
- $f(3)=2 ; f^{\prime}(3)=-3$
- $f(4)=-2 ; f^{\prime}(4)=0$
(a) Why does $f^{-1}$ exist?
(b) Let $g=f^{-1}$. Find $g^{\prime}(2)$, if you have sufficient information. Find $g^{\prime}(3)$, if you have sufficient information.
(c) Sketch a plausible graph of $y=f(x)$ over the interval $[0,5]$. (So it should agree with all information given.) Then sketch the graph of $y=g(x)$, having the correct relationship to the graph of $y=f(x)$.

