Math 1720 Midterm 1 Review Problems
(Section 7.4 not included in this review, but it is examinable for the midterm.)
0.
(a) Find

$$
\log _{27}(9)
$$

Solution.

Since $9>0, \log _{27}(9)$ is defined. We have

$$
\log _{27}(9)=y
$$

iff

$$
27^{y}=9
$$

iff

$$
\left(3^{3}\right)^{y}=3^{2}
$$

iff

$$
3^{3 y}=3^{2}
$$

Since $f(x)=3^{x}$ is 1-1 (as a^{x} is a 1-1 function whenever $0<a<1$ or $1<a$), this is equivalent to

$$
3 y=2
$$

iff

$$
y=2 / 3
$$

So

$$
\log _{27}(9)=2 / 3
$$

(b) Find all solutions to the equation

$$
\ln (2-x)+\ln (5-x)=2 \ln (5)
$$

Solution.First note that $\ln (2-x)$ is defined just when $2-x>0$, i.e. when $x<2$. And $\ln (5-x)$ is defined just when $5-x>0$, i.e. when $x<5$. Putting both these conditions together, since $2<5$, any valid solution must be in the interval $x<2$.

So, for $x<2$, we have $2-x>0$ and $5-x>0$, so we can apply the rule $\ln (a)+\ln (b)=\ln (a b)$ (which applies just when $a, b>0$), and the equation becomes:

$$
\ln ((2-x)(5-x))=2 \ln (5), \quad x<2
$$

This is equivalent to

$$
\ln ((2-x)(5-x))=\ln \left(5^{2}\right)=\ln (25), \quad x<2
$$

Since \ln is a 1-1 function, this is equivalent to

$$
(2-x)(5-x)=25, \quad x<2
$$

iff

$$
10-7 x+x^{2}=25, \quad x<2
$$

iff

$$
x^{2}-7 x-15=0, \quad x<2
$$

iff

$$
x=\frac{-(-7) \pm \sqrt{(-7)^{2}-4(1)(-15)}}{2(1)}, x<2
$$

iff

$$
x=\frac{7 \pm \sqrt{49+60}}{2}, x<2
$$

iff

$$
x=\frac{7}{2} \pm \frac{\sqrt{109}}{2}, x<2 .
$$

So we have two potential solutions, but for each, it is in fact a solution iff it is <2. So we check this for each potential solution.

Now $\frac{7}{2}=3.5>2$, so

$$
\frac{7}{2}+\frac{\sqrt{109}}{2}>2,
$$

so this is not a solution.
But $109>100$, so $\sqrt{109}>\sqrt{100}=10$, so $\frac{1}{2} \sqrt{109}>5$, so

$$
\frac{7}{2}-\frac{\sqrt{109}}{2}<3.5-5=-1.5<2 .
$$

So

$$
x=\frac{7}{2}-\frac{\sqrt{109}}{2}<2,
$$

and so this is a solution, and in fact is the unique solution.
(c) Find all solutions to the equation

$$
e^{x^{3}}=6^{x} .
$$

Solution.
Note that both sides of the equation are defined for all values of x. The equation is equivalent to

$$
e^{x^{3}}=\left(e^{\ln (6)}\right)^{x}=e^{x \ln (6)} .
$$

Since $f(x)=e^{x}$ is a 1-1 function (it's the inverse of $g(x)=\ln (x)$, so is 1-1), this is equivalent to

$$
x^{3}=x \ln (6)
$$

iff

$$
x^{3}-x \ln (6)=0
$$

iff

$$
x\left(x^{2}-\ln (6)\right)=0
$$

iff

$$
x(x+\sqrt{\ln (6)})(x-\sqrt{\ln (6)})=0 .
$$

Note that $0<\ln (6)$ since $1<6$, and since \ln is an increasing function, $\ln (1)<$ $\ln (6)$ so $0<\ln (6)$. Therefore $\sqrt{\ln (6)}$ makes sense.

So we have 3 solutions: $x=0$ and $x= \pm \sqrt{\ln (6)}$.
1.
(a) Find and simplify

$$
\int_{-1}^{1} 6^{2 x} d x
$$

Solution.Since $6^{2 x}=\left(6^{2}\right)^{x}=36^{x}$, this is

$$
\begin{aligned}
& \int_{-1}^{1}(36)^{x} d x \\
= & \left.\frac{1}{\ln (36)} 36^{x}\right|_{-1} ^{1} \\
= & \frac{1}{\ln \left(6^{2}\right)}\left(36^{1}-36^{-1}\right) \\
= & \frac{1}{2 \ln (6)}\left(36-\frac{1}{36}\right) \\
= & \frac{1}{2 \ln (6)}\left(\frac{36^{2}-1}{36}\right) \\
& =\frac{6^{4}-1}{72 \ln (6)} .
\end{aligned}
$$

(I would consider $6^{4}-1$ to be simpler than 1295.)
(b) Find and simplify

$$
\int_{3}^{10} \frac{5}{2-x} d x
$$

Solution.Since $\frac{d}{d x}(\ln (|2-x|))=\frac{1}{2-x}(2-x)^{\prime}=-\frac{1}{2-x}$, we have

$$
\int_{3}^{10} \frac{5}{2-x} d x=-\left.5 \ln (|2-x|)\right|_{3} ^{10}
$$

(Alternatively, you might also have done a substitution of $u=2-x$ to get started.)

$$
\begin{gathered}
=-5 \ln (|2-10|)-(-5 \ln (|2-3|)) \\
=-5 \ln (|-8|)+5 \ln (|-1|) \\
=-5 \ln (8)+5 \ln (1) \\
=-5 \ln (8)+5(0) \\
=-5 \ln (8)=-5 \ln \left(2^{3}\right)=-15 \ln (2) .
\end{gathered}
$$

(Remark: the solution here has been corrected from an earlier version. In the earlier version I swapped over the locations of plugging in $x=3$ and $x=10$,
so ended up with an answer of $+15 \ln (2)$ instead. Note that $-15 \ln (2)$ is negative, since $\ln (2)>0$ since $\ln (x)>0$ for $x>1$. You can verify independently that the final answer should be negative, because the function we're integrating, $f(x)=5 /(2-x)$, has $f(x)<0$ for all x in the interval of integration, $3 \leq x \leq 10$. And $3 \leq 10$, i.e. the bounds of integration in \int_{3}^{10} are in the usual order. So the integral $\int_{3}^{10} f(x) d x$ must come out negative. (I'm also using the fact that f is continuous over $3 \leq x \leq 10$.))
(c) Find

$$
\int_{0}^{\pi / 2} e^{3 \sin (x)} \cos (x) d x
$$

Solution.Since $(3 \sin (x))^{\prime}=3 \cos (x)$, we have

$$
\frac{d}{d x}\left(e^{3 \sin (x)}\right)=e^{3 \sin (x)}(3 \sin (x))^{\prime}=3 e^{3 \sin (x)} \cos (x)
$$

So

$$
\begin{gathered}
\int_{0}^{\pi / 2} e^{3 \sin (x)} \cos (x) d x \\
\quad=\left.\frac{1}{3} e^{3 \sin (x)}\right|_{0} ^{\pi / 2}
\end{gathered}
$$

(You might alternatively have done a substitution of $u=3 \sin (x)$.)

$$
\begin{gathered}
=\frac{1}{3}\left(e^{3 \sin (\pi / 2)}-e^{3 \sin (0)}\right) \\
=\frac{1}{3}\left(e^{3}-e^{0}\right) \\
=\frac{1}{3}\left(e^{3}-1\right)
\end{gathered}
$$

(d) Find

$$
\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x
$$

Solution.Since $\left(e^{x}+e^{-x}\right)^{\prime}=\left(e^{x}-e^{-x}\right)$, and that's the numerator, subbing $u=e^{x}+e^{-x}$ will be useful. Then $d u=\left(e^{x}-e^{-x}\right) d x$, so

$$
\begin{aligned}
\int & =\int \frac{d u}{u}=\ln (|u|)+c \\
& =\ln \left(\left|e^{x}+e^{-x}\right|\right)+c \\
& =\ln \left(e^{x}+e^{-x}\right)+c
\end{aligned}
$$

the latter since $e^{x}+e^{-x}>0$, since both $e^{x}>0$ and $e^{-x}>0$.
(a) Find

$$
\frac{d}{d x}\left(\frac{x^{3}}{\ln \left(x^{3}\right)}\right)
$$

Solution. Note that $\ln \left(x^{3}\right)$ is only defined when $x^{3}>0$, i.e. when $x>0$, so we have $\ln \left(x^{3}\right)=3 \ln (x)$ for over its domain. So the derivative is equivalent to:

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{x^{3}}{3 \ln (x)}\right) \\
= & \frac{1}{3} \frac{d}{d x}\left(\frac{x^{3}}{\ln (x)}\right) .
\end{aligned}
$$

Appying the quotient rule,

$$
\begin{gathered}
=\frac{1}{3} \frac{\left(x^{3}\right)^{\prime} \ln (x)-x^{3}(\ln (x))^{\prime}}{(\ln (x))^{2}} \\
=\frac{1}{3} \frac{3 x^{2} \ln (x)-x^{3}(1 / x)}{\ln (x)^{2}} \\
=\frac{1}{3} \frac{3 x^{2} \ln (x)-x^{2}}{(\ln (x))^{2}} \\
=\frac{1}{3} \frac{x^{2}(3 \ln (x)-1)}{(\ln (x))^{2}} .
\end{gathered}
$$

The domain of the original function, $x^{3} / \ln \left(x^{3}\right)$, is the union of the intervals $(0,1)$ and $(1, \infty)$. For $x^{3} / \ln \left(x^{3}\right)$ is defined iff both numerator and denominator are defined, and denominator is non- 0 . The numerator x^{3} is defined for all x. The denominator $\ln \left(x^{3}\right)$ is defined iff $x^{3}>0$ iff $x>0$, and is non- 0 iff $x^{3} \neq 1$ iff $x \neq 1$. Therefore the function is defined just for $0<x<1$ and $1<x$. The formula we found for the derivative gives the same domain (its numerator works for $x>0$ and its denominator $(\ln (x))^{2}$ works for $x>0$ and is non- 0 for $x \neq 1$), so it is correct as written and needn't be restricted.
(b) Find

$$
\frac{d}{d x}\left(\sqrt{x}^{\sqrt{x}}\right)
$$

Solution.The function to be differentiated has the form $f(x)^{g(x)}$, where $f(x)=$ \sqrt{x} and $g(x)=\sqrt{x}$. Here the domain is $\sqrt{x}>0$, i.e. $x>0$, since we're using \sqrt{x} in the base. We first convert the function to be differentiated to base e :

$$
\begin{aligned}
& =\frac{d}{d x}\left(e^{\ln (\sqrt{x})}\right)^{\sqrt{x}} \\
& =\frac{d}{d x}\left(e^{\sqrt{x} \cdot \ln \left(x^{\frac{1}{2}}\right)}\right) \\
& =\frac{d}{d x}\left(e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}\right) .
\end{aligned}
$$

Now applying the chain rule and that $\left(e^{x}\right)^{\prime}=e^{x}$:

$$
=e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}\left(\frac{1}{2} \sqrt{x} \ln (x)\right)^{\prime}
$$

Pulling the $\frac{1}{2}$ through and then applying the product rule:

$$
\begin{gathered}
=\frac{1}{2} e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}\left(\sqrt{x}^{\prime} \ln (x)+\sqrt{x}(\ln (x))^{\prime}\right) \\
=\frac{1}{2} e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}\left(\frac{1}{2 \sqrt{x}} \ln (x)+\sqrt{x} \frac{1}{x}\right) \\
=\frac{1}{2} e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}\left(\frac{1}{2 \sqrt{x}} \ln (x)+\frac{1}{\sqrt{x}}\right) \\
=\frac{1}{2 \sqrt{x}} e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}\left(\frac{1}{2} \ln (x)+1\right)
\end{gathered}
$$

From the first few steps, we have $e^{\left(\frac{1}{2} \sqrt{x} \ln (x)\right)}=\sqrt{x}^{\sqrt{x}}$ so:

$$
=\frac{1}{2 \sqrt{x}} \sqrt{x}^{\sqrt{x}}\left(\frac{1}{2} \ln (x)+1\right)
$$

You could also combine the powers of x into a single term: $\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}$ and $\sqrt{x}^{\sqrt{x}}=\left(x^{\frac{1}{2}}\right)^{\sqrt{x}}=x^{\left(\frac{1}{2} \sqrt{x}\right)}$, so

$$
\begin{aligned}
& =\frac{1}{2}\left(x^{-\frac{1}{2}}\right) x^{\left(\frac{1}{2} \sqrt{x}\right)}\left(\frac{1}{2} \ln (x)+1\right) \\
& =\frac{1}{2} x^{\left(-\frac{1}{2}+\frac{1}{2} \sqrt{x}\right)}\left(\frac{1}{2} \ln (x)+1\right) \\
& =\frac{1}{2} x^{\left(\frac{1}{2}(-1+\sqrt{x})\right)}\left(\frac{1}{2} \ln (x)+1\right)
\end{aligned}
$$

(c) Let $a=\left(e^{13}+6 / \pi\right)$. Find

$$
\frac{d}{d x}\left(a^{x} x^{\ln (a)}\right)
$$

We must differentiate the product of the functions a^{x} and $x^{\ln (a)}$, so by the product rule:

$$
=\left(a^{x}\right)^{\prime} x^{\ln (a)}+a^{x}\left(x^{\ln (a)}\right)^{\prime}
$$

For the first term: Since a is a constant, a^{x} has a constant base and variable exponent, so it's an exponential function, so we use the exponential function rule:

$$
=\ln (a) a^{x} x^{\ln (a)}+a^{x}\left(x^{\ln (a)}\right)^{\prime}
$$

For the second term: since a is a constant, so is $\ln (a)$, so $x^{\ln (a)}$ has variable base and constant exponent, so we can just use the power rule:

$$
\begin{gathered}
=\ln (a) a^{x} x^{\ln (a)}+a^{x} \ln (a) x^{\ln (a)-1} \\
=\ln (a) a^{x}\left(x^{\ln (a)}+x^{\ln (a)-1}\right)
\end{gathered}
$$

3. Let $f(x)=\sqrt{x^{6}-4}$. Find the longest intervals over which f has an inverse, and find the formula for the inverse over each such interval.

Solution.We have $f(x)$ is defined just when $x^{6}-4 \geq 0$, i.e. when

$$
x^{6} \geq 4
$$

iff

$$
\left(x^{6}\right)^{1 / 6} \geq 4^{1 / 6}
$$

(since $f(x)=x^{1 / 6}$ is an increasing function) iff

$$
|x| \geq 4^{1 / 6}
$$

iff

$$
x \geq 4^{1 / 6} \text { or } x \leq-4^{1 / 6}
$$

We look at f^{\prime} to determine where f is increasing/decreasing, in order to determine where it is $1-1$. Now

$$
f(x)=\left(x^{6}-4\right)^{\frac{1}{2}}
$$

so by the chain and power rules,

$$
\begin{aligned}
f^{\prime}(x)= & \frac{1}{2}\left(x^{6}-4\right)^{-\frac{1}{2}}\left(x^{6}-4\right)^{\prime} \\
= & \frac{1}{2 \sqrt{x^{6}-4}}\left(6 x^{5}\right) \\
& =\frac{3 x^{5}}{\sqrt{x^{6}-4}}
\end{aligned}
$$

Now $f^{\prime}(x)=0$ iff the numerator is 0 and the denominator non- 0 . The denominator is 0 just when $x^{6}-4=0$, i.e. $x= \pm 4^{1 / 6}$ (so the derivative is not defined at these points). And so calculating like above, $f^{\prime}(x)$ is defined for $x>4^{1 / 6}$ and for $x<-4^{1 / 6}$ (not at $x= \pm 4^{1 / 6}$).

The numerator is 0 just when $3 x^{5}=0$, which is iff $x=0$. But $x=0$ is not in the domain of f anyway.

The denominator $\sqrt{x^{6}-4}>0$ for all x in the domain of f (and therefore for all x in the domain of $\left.f^{\prime}\right)$. Therefore the sign of $f^{\prime}(x)$ is the same as that of its numerator, $3 x^{5}$.

For $x>4^{1 / 6}$, we have $x>0$, so the numerator $3 x^{5}>0$. Therefore $f^{\prime}(x)>0$, so f is increasing over the interval $\left(4^{1 / 6}, \infty\right)$. Since f is also continuous, it is therefore in fact increasing over $\left[4^{1} / 6, \infty\right)$.

For $x<-4^{1 / 6}$, we have $x<0$, so the numerator $3 x^{5}<0$. Therefore $f^{\prime}(x)<0$, so f is decreasing over the interval $\left(-\infty,-4^{1 / 6}\right)$. Since f is also continuous, it is therefore in fact decreasing over $\left(-\infty, 4^{1 / 6}\right]$.

Since the domain of f is $\left(-\infty,-4^{1 / 6}\right] \cup\left[4^{1 / 6}, \infty\right)$, these are the longest intervals over which f is increasing/decreasing: If we wanted to enlarge $D_{1}=$ $\left(-\infty,-4^{1 / 6}\right]$ to a larger interval, and actually include more points in the domain of f, we would need to include $+4^{1 / 6}$ (since nothing in the interval $\left(-4^{1 / 6}, 4^{1 / 6}\right)$ is included in f 's domain). But $f\left(-4^{1 / 6}\right)=0=f\left(4^{1 / 6}\right)$, so f is not decreasing over $\left(-\infty, 4^{1 / 6}\right]$, and therefore is neither decreasing over any interval larger than that.
(We can ignore points in the interval $\left(-4^{1 / 6}, 4^{1 / 6}\right)$ since none of these are included in the domain of f.)

Since f is decreasing over $D_{1}=\left(-\infty,-4^{1 / 6}\right]$, it is $1-1$ over this interval. Since f is increasing over $D_{2}=\left[4^{1 / 6}, \infty\right)$, it is $1-1$ over this interval. And f is not 1-1 over any intervals which are larger in any useful way: as remarked above, if we extend $\left(-\infty,-4^{1 / 6}\right]$ to the larger interval $\left(-\infty, 4^{1 / 6}\right]$, then since $f\left(-4^{1 / 6}\right)=0=f\left(4^{1 / 6}\right)$, we have f is not 1-1 over the latter interval. So D_{1}, D_{2} are the largest intervals over which f is 1-1.
(Again we ignore points in the interval $\left(-4^{1 / 6}, 4^{1 / 6}\right)$.)
Since f has an inverse over an interval iff it is 1-1 over that interval, we know that the longest intervals over which f has an inverse are D_{1} and D_{2}. Note that the range of f over $\left[4^{1 / 6}, \infty\right)$ is $[0, \infty)$. This is because $f\left(4^{1 / 6}\right)=0$, and f is increasing over the interval $\left[4^{1 / 6}, \infty\right.$) (established earlier), and $f(x) \geq 0$ for all x in $\left[4^{1 / 6}, \infty\right)$. And f is continuous over $\left[4^{1 / 6}, \infty\right)$,

$$
\lim _{x \rightarrow \infty}\left(x^{6}-4\right)=\infty
$$

and since also

$$
\lim _{z \rightarrow \infty} \sqrt{z}=\infty
$$

we get

$$
\lim _{x \rightarrow \infty} \sqrt{x^{6}-4}=\infty
$$

Therefore by the intermediate value theorem, for every $a \geq 0$ there is c in the interval $\left[4^{1 / 6}, \infty\right)$ such that $f(c)=a$. So the range of f over $D_{1}=\left[4^{1 / 6}, \infty\right)$ is $R_{1}=[0, \infty)$.

Since f is an even function, and $D_{2}=\left(-\infty,-4^{1 / 6}\right]$ is the reflection of $D_{1}=\left[4^{1 / 6}, \infty\right)$ across the y-axis, we get that the range of f over D_{2} is $R_{2}=$ $R_{1}=[0, \infty)$. (That is, if x is in $\left(-\infty,-4^{1 / 6}\right]$ then $f(x)=f(-x)$, and $-x \geq 4^{1 / 6}$, so $f(x)=f(-x) \geq 0$. And if a is in $[0, \infty)$, then there's c in $\left[4^{1 / 6}, \infty\right)$ such that $f(c)=a$, so $f(-c)=a$ also, and $-c$ is in $\left(-\infty,-4^{1 / 6}\right]$. Thus the range of f over $\left(-\infty,-4^{1 / 6}\right]$ is $[0, \infty)$.)

Now for x in D_{1} or in D_{2}, and for any number y, we have

$$
f(x)=y
$$

iff

$$
\sqrt{x^{6}-4}=y
$$

iff (note the above line implies $y \geq 0$)

$$
\sqrt{x^{6}-4}=y, \quad y \geq 0
$$

iff

$$
x^{6}-4=y^{2}, \quad y \geq 0
$$

iff

$$
x^{6}=y^{2}+4, \quad y \geq 0
$$

iff

$$
x= \pm\left(y^{2}+4\right)^{1 / 6}, \quad y \geq 0
$$

Now for f over the interval $D_{1}=\left[4^{1 / 6}, \infty\right)$, we have $x \geq 4^{1 / 6}$, and $\left(y^{2}+4\right)^{1 / 6} \geq$ 0 , so in this case $f(x)=y$ iff

$$
x=+\left(y^{2}+4\right)^{1 / 6}, \quad y \geq 0
$$

So letting

$$
g(y)=\left(y^{2}+4\right)^{1 / 6}, \quad y \geq 0
$$

we have that g is the inverse of f over $D_{1}=\left[4^{1 / 6}, \infty\right)$. And we swap over the domains and ranges, so the domain of g is $R_{1}=[0, \infty)$ (as also indicated above by " $y \geq 0$ "), and the range of g is $D_{1}=\left[4^{1 / 6}, \infty\right)$.

Now for f over the interval $D_{2}=\left(-\infty,-4^{1 / 6}\right]$, we have $x \leq-4^{1 / 6}$, and $\left(y^{2}+4\right)^{1 / 6} \geq 0$, so in this case $f(x)=y$ iff

$$
x=-\left(y^{2}+4\right)^{1 / 6}, \quad y \geq 0
$$

So letting

$$
h(y)=-\left(y^{2}+4\right)^{1 / 6}, \quad y \geq 0
$$

we have that h is the inverse of f over $D_{2}=\left(-\infty,-4^{1 / 6}\right]$. And we swap over the domains and ranges, so the domain of h is $R_{2}=[0, \infty)$ (as also indicated above by " $y \geq 0$ "), and the range of h is $D_{2}=\left(-\infty,-4^{1 / 6}\right]$.
4. Let $f(x)=e^{-x^{2}}$. (a) Does f have an inverse over the interval $(-2,5)$? (b) Find the formula for the inverse of f over the interval $D=[5,10]$, and find the domain and range of the inverse.

Solution.

(a) No, because f is not 1-1 over the interval $(-2,5)$, because e.g. $f(-1)=$ $e^{-(-1)^{2}}=e^{-1}$, and $f(1)=e^{-(1)^{2}}=e^{-1}$, so $f(-1)=f(1)$, but $-1 \neq 1$, and -1 and 1 both lie in the interval $(-2,5)$.
(b) (Note f has an inverse over $[5,10]$ because

$$
f^{\prime}(x)=\left(e^{-x^{2}}\right)^{\prime}=e^{-x^{2}}\left(-x^{2}\right)^{\prime}=-2 x e^{-x^{2}}
$$

and for all $x, e^{-x^{2}}>0$, and for $5 \leq x \leq 10$, we have $x>0$, so

$$
f^{\prime}(x)=-2 x e^{-x^{2}}<0
$$

for $5 \leq x \leq 10$. Thus, f is decreasing over this interval, so is $1-1$ over this interval, and therefore has an inverse over this interval.)

Now for $5 \leq x \leq 10$ and y any number we have

$$
y=e^{-x^{2}}, \quad 5 \leq x \leq 10
$$

iff

$$
y=e^{-x^{2}}, \quad 5 \leq x \leq 10, y>0
$$

(since $e^{-x^{2}}>0$ for all x) iff

$$
\ln (y)=\ln \left(e^{-x^{2}}\right), \quad 5 \leq x \leq 10, y>0
$$

(since \ln is $1-1$ and we're assuming $y>0$) iff

$$
\ln (y)=-x^{2}, \quad 5 \leq x \leq 10, y>0
$$

iff

$$
-\ln (y)=x^{2}, \quad 5 \leq x \leq 10, y>0
$$

iff

$$
\sqrt{-\ln (y)}=|x|, \quad 5 \leq x \leq 10, y>0
$$

iff

$$
\pm \sqrt{-\ln (y)}=x, \quad 5 \leq x \leq 10, y>0
$$

iff

$$
\sqrt{-\ln (y)}=x, \quad 5 \leq x \leq 10, y>0
$$

(for $5 \leq x \leq 10$, we can't have $x=-\sqrt{-\ln (y)}$, since any $\sqrt{z} \geq 0$ for any z). So setting

$$
g(y)=\sqrt{-\ln (y)}, \quad y>0,5 \leq g(y) \leq 10
$$

this is the formula for the inverse of f over the interval $[5,10]$.
The range of the inverse is $[5,10]$ (since we're computing the inverse for f over the interval [5, 10]). The domain of the inverse is the range of f over $[5,10]$. Since f is decreasing over this interval and is continuous, the range of f over this interval is $[f(10), f(5)]$, by the intermediate value theorem. Thus, the domain of the inverse is $\left[e^{-(10)^{2}}, e^{-5^{2}}\right]=\left[e^{-100}, e^{-25}\right]$. So in the end, a clearer definition of the inverse is

$$
g(y)=\sqrt{-\ln (y)}, \quad e^{-100} \leq y \leq e^{-25}
$$

5. Suppose that f is a differentiable function, and that f is one-to-one, and

- $f(2)=4 ; f^{\prime}(2)=-1$
- $f(3)=2 ; f^{\prime}(3)=-3$
- $f(4)=-2 ; f^{\prime}(4)=0$
(a) Why does f^{-1} exist?
(b) Let $g=f^{-1}$. Find $g^{\prime}(2)$, if you have sufficient information. Find $g^{\prime}(3)$, if you have sufficient information.
(c) Sketch a plausible graph of $y=f(x)$ over the interval $[0,5]$. (So it should agree with all information given.) Then sketch the graph of $y=g(x)$, having the correct relationship to the graph of $y=f(x)$.

Solution.
(a) f^{-1} exists because f is one-to-one.
(b) Hint: before doing this problem it can help to do part (c) first, to guide your thinking about the relationship between f and f^{-1}.

We know $g=f^{-1}$. Consider $g^{\prime}(2)$. Here $x=2$ is an input to $g=f^{-1}$, and this corresponds to 2 being an output of f. The data given shows that $f(3)=2$, and in this equation 2 is the output. Thus, since $g=f^{-1}$, we have $g(2)=3$ (tho this was not asked for). The data also specifies $f^{\prime}(3)=-3$. So we can find $g^{\prime}(2)$:

$$
g^{\prime}(2)=\frac{1}{f^{\prime}(3)}=\frac{1}{-3}=-\frac{1}{3}
$$

We do not have sufficient information to find $g^{\prime}(3)$ because the only f-outputs specified in the data are 4,2 and -2 (equal to $f(2), f(3), f(4)$ respectively); 3 is not included in this list of f-outputs.
(c) See sketches document on website.

