Math 1720 Midterm 2 Review Problems

1. Compute

$$
\frac{d}{d x}(\operatorname{arcsec}(\ln (x))) .
$$

Solution. Using the chain rule,

$$
\begin{aligned}
& =\operatorname{arcsec}^{\prime}(\ln (x)) \ln ^{\prime}(x) \\
& =\frac{1}{|\ln (x)| \sqrt{\ln (x)^{2}-1}} \frac{1}{x}
\end{aligned}
$$

2. (a) Find

$$
\arctan (-1 / \sqrt{3})
$$

(b) Fully simplify the expression

$$
\sec (\arctan (x))
$$

(Your answer should not involve any trig or inverse trig functions.)
(c) Find

$$
\int_{-\sqrt{3}}^{-\sqrt{2}} \frac{1}{\sqrt{4-x^{2}}} d x
$$

Solution. (a) (Method 1) $\arctan (-1 / \sqrt{3})$ is the unique angle θ such that $-\pi / 2<$ $\theta<\pi / 2$ (i.e. in quadrants 1 or 4) and $\tan (\theta)=-1 / \sqrt{3}$. (Since tan is $1-1$ over the interval $-\pi / 2<\theta<\pi / 2$, and its range over this interval is $(-\infty, \infty)$, there's exactly one θ satisfying these requirements.) Looking at the standard angles, $\tan (\theta)=-1 / \sqrt{3}$ when $\sin (\theta)=\frac{1}{2}$ and $\cos (\theta)=-\sqrt{3} / 2$, or when $\sin (\theta)=-\frac{1}{2}$ and $\cos (\theta)=\sqrt{3} / 2$: in these cases,

$$
\tan (\theta)=\frac{\sin (\theta)}{\cos (\theta)}=-\frac{\frac{1}{2}}{\sqrt{3} / 2}=-\frac{1}{\sqrt{3}} .
$$

But we need θ in quadrant 1 or 4 , so $\cos (\theta) \geq 0$, so it's the latter option: $\sin (\theta)=-\frac{1}{2}$ and $\cos (\theta)=\sqrt{3} / 2$. This occurs exactly when $\theta=-\pi / 6$. So $\arctan (-1 / \sqrt{3})=-\pi / 6$.
(a) $($ Method 2) $\arctan (-1 / \sqrt{3})=\alpha$ where $\tan (\alpha)=-1 / \sqrt{3}$ and $-\pi / 2<$ $\alpha<\pi / 2$. Use a reference triangle or the equation

$$
\tan ^{2}(\alpha)+1=\sec ^{2}(\alpha)
$$

to find that

$$
\begin{gathered}
(-1 / \sqrt{3})^{2}+1=\sec ^{2}(\alpha) \\
4 / 3=\sec ^{2}(\alpha) \\
2 / \sqrt{3}=|\sec (\alpha)| \\
|\cos (\alpha)|=\sqrt{3} / 2
\end{gathered}
$$

Since $-\pi / 2<\alpha<\pi / 2$, we have $\cos (\alpha)=\sqrt{3} / 2$, so either $\alpha=\pi / 6$ or $\alpha=-\pi / 6$. Since $\tan (\alpha)<0$, we have $\alpha=-\pi / 6$. So

$$
\arctan (-1 / \sqrt{3})=-\pi / 6
$$

(b) Let $\alpha=\arctan (x)$; so $\tan (\alpha)=x$. We need to find $\sec (\alpha)$ in terms of $x=\tan (\alpha)$. As in part (a), use a reference triangle (see sketches document) or the equation

$$
\tan ^{2}+1=\sec ^{2}(\alpha)
$$

to see that

$$
\begin{aligned}
x^{2}+1 & =\sec ^{2}(\alpha) \\
|\sec (\alpha)| & =\sqrt{x^{2}+1}
\end{aligned}
$$

Since $\arctan (x)=\alpha$ is in the interval $-\pi / 2<\alpha<\pi / 2$, we have $\cos (\alpha)>0$, so $\sec (\alpha)>0$. So

$$
\sec (\alpha)=\sqrt{x^{2}+1}
$$

So

$$
\sec (\arctan (x))=\sqrt{x^{2}+1}
$$

as required.
(c)

$$
\int_{-\sqrt{3}}^{-\sqrt{2}} \frac{1}{\sqrt{4-x^{2}}} d x
$$

We will use the fact that $d / d x(\arcsin (x))=1 / \sqrt{1-x^{2}}$. For this, we first convert the $4-x^{2}$ to the form $1-u^{2}$. So:

$$
=\int_{-\sqrt{3}}^{-\sqrt{2}} \frac{1}{\sqrt{4\left(1-(x / 2)^{2}\right)}} d x
$$

So sub $u=x / 2$. Then $d u=d x / 2$, so $d x=2 d u$, and $\sqrt{4}=2$, so

$$
\begin{gathered}
=\int_{x=-\sqrt{3}}^{-\sqrt{2}} \frac{1}{2 \sqrt{1-u^{2}}} 2 d u \\
=\int_{x=-\sqrt{3}}^{-\sqrt{2}} \frac{1}{\sqrt{1-u^{2}}} d u \\
=\arcsin (u) \mid \int_{x=-\sqrt{3}}^{-\sqrt{2}} \\
=\arcsin (x / 2) \mid \int_{x=-\sqrt{3}}^{-\sqrt{2}} \\
=\arcsin (-\sqrt{2} / 2)-\arcsin (-\sqrt{3} / 2)
\end{gathered}
$$

And $\arcsin (-\sqrt{2} / 2)=\alpha$ where $\sin (\alpha)=-\sqrt{2} / 2$ and $-\pi / 2 \leq \alpha \leq \pi / 2$, which is $\alpha=-\pi / 4$. Similarly, $\arcsin (-\sqrt{3} / 2)=\alpha$ where $\sin (\alpha)=-\sqrt{3} / 2$ and $-\pi / 2 \leq$ $\alpha \leq \pi / 2$, which is $\alpha=-\pi / 3$.

$$
\begin{gathered}
=-\pi / 4-(-\pi / 3) \\
=4 \pi / 12-3 \pi / 12=\pi / 12
\end{gathered}
$$

3. Compute the limits

$$
\begin{gathered}
\lim _{x \rightarrow \infty}(1-3 / x)^{2 x} \\
\lim _{x \rightarrow 0^{+}} \sin (x)^{\tan (x)}
\end{gathered}
$$

Solution. (a)

$$
\lim _{x \rightarrow \infty}(1-3 / x)^{2 x}
$$

As $x \rightarrow \infty, 3 / x \rightarrow 0$ and $2 x \rightarrow \infty$, so this limit has form 1^{∞}, which is indeterminate. We convert to base e :

$$
\begin{gathered}
=\lim _{x \rightarrow \infty} e^{\ln (1-3 / x) 2 x} \\
=e^{\lim _{x \rightarrow \infty} \ln (1-3 / x) 2 x} \\
=e^{L}
\end{gathered}
$$

where

$$
L=\lim _{x \rightarrow \infty} \ln (1-3 / x) 2 x
$$

Now since $1-3 / x \rightarrow 1$ as $x \rightarrow \infty$ and $\ln (1)=0$ and \ln is continuous, $\lim _{x \rightarrow \infty} \ln (1-3 / x)=\ln (1)=0$. And $2 x \rightarrow \infty$. So this limit has form $0 \cdot \infty$. So we convert to

$$
=\lim _{x \rightarrow \infty} \frac{\ln (1-3 / x)}{1 / 2 x}
$$

This limit has form $0 / 0$, so L'Hopital's rule applies:

$$
\begin{gathered}
=\lim _{x \rightarrow \infty} \frac{\ln (1-3 / x)^{\prime}}{(1 / 2 x)^{\prime}} \\
=\lim _{x \rightarrow \infty} \frac{\frac{1}{1-3 / x}(1-3 / x)^{\prime}}{\frac{1}{2}\left(-x^{-2}\right)} \\
=\lim _{x \rightarrow \infty} \frac{\frac{1}{1-3 / x} 3 x^{-2}}{\frac{1}{2}\left(-x^{-2}\right)} \\
\quad=\lim _{x \rightarrow \infty}-6 \frac{1}{1-3 / x}
\end{gathered}
$$

And $3 / x \rightarrow 0$ in the limit, so

$$
=\lim _{x \rightarrow \infty}-6 \frac{1}{1}=-6
$$

Thus, the final answer is

$$
e^{L}=e^{-6} .
$$

(b)

$$
\lim _{x \rightarrow 0^{+}} \sin (x)^{\tan (x)}
$$

As $x \rightarrow 0^{+}$, both $\sin (x) \rightarrow 0^{+}$and $\tan (x) \rightarrow 0^{+}$, so this limit has the form 0^{0}, which is indeterminate. We convert to base e :

$$
\begin{gathered}
=\lim _{x \rightarrow 0^{+}} e^{\ln (\sin (x)) \tan (x)} \\
=e^{\lim _{x \rightarrow 0^{+}} \ln (\sin (x)) \tan (x)} \\
=e^{L}
\end{gathered}
$$

where

$$
L=\lim _{x \rightarrow 0^{+}} \ln (\sin (x)) \tan (x) .
$$

This limit has form $-\infty \cdot 0^{+}$, so converting,

$$
=\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin (x))}{\cot (x)}
$$

This limit has form $-\infty / \infty$, so L'Hopital's rule applies:

$$
=\lim _{x \rightarrow 0^{+}} \frac{\ln (\sin (x))^{\prime}}{\cot (x)^{\prime}}
$$

Using the chain rule,
$\ln (\sin (x))^{\prime}=\ln ^{\prime}(\sin (x))(\sin (x))^{\prime}=(1 / \sin (x)) \cdot \cos (x)=\cos (x) / \sin (x)=\cot (x)$.
And by the quotient rule,

$$
\begin{aligned}
& \cot ^{\prime}(x)=\left(\frac{\cos (x)}{\sin (x)}\right)^{\prime}=\left(\frac{\cos ^{\prime}(x) \sin (x)-\cos (x) \sin ^{\prime}(x)}{\sin ^{2}(x)}\right) \\
= & \frac{-\sin (x) \sin (x)-\cos (x) \cos (x)}{\sin ^{2}(x)}=-\frac{1}{\sin ^{2}(x)}=-\csc ^{2}(x) .
\end{aligned}
$$

To the limit is

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\cot (x)}{-\csc ^{2}(x)}=\frac{\cos (x) / \sin (x)}{-1 / \sin ^{2}(x)} \\
& \quad=\lim _{x \rightarrow 0^{+}} \frac{\cos (x)}{-1 / \sin (x)} \\
& =\lim _{x \rightarrow 0^{+}}-\cos (x) \sin (x)=1 \cdot 0=0 .
\end{aligned}
$$

So the final answer is

$$
e^{L}=e^{0}=1
$$

4. Compare the growth rates of the functions

$$
\begin{gathered}
f(x)=2^{x} \\
g(x)=\ln \left(5^{x}\right) \\
h(x)=x^{\ln (x)}
\end{gathered}
$$

Hint: for comparing f with h, convert to base e. Use the fact that if functions $k(x) \rightarrow \infty$ and $j(x) \rightarrow \infty$ as $x \rightarrow \infty$, and if $k(x) \gg j(x)$, then $k(x)-j(x) \rightarrow \infty$ also.
Comparing f vs g, note that $g(x)=\ln \left(5^{x}\right)=x \ln (5)$, and $\ln (5)$ is a positive constant. So $g(x)=k x$ for some $k>0$. But $f(x)=2^{x}$. It's a standard comparison fact that $2^{x} \gg x$ (as the base 2 is >1 and x is just a power of x). And the positive constant k does not change this, since

$$
\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)}=\lim _{x \rightarrow \infty} \frac{k x}{2^{x}}=\lim _{x \rightarrow \infty} k\left(\frac{x}{2^{x}}\right)=k \lim _{x \rightarrow \infty} \frac{x}{2^{x}}
$$

The limit on the right is 0 since $x \ll 2^{x}$, so we get

$$
=k 0=0 .
$$

So $k x \ll 2^{x}$.
Alternatively, you could compute the limit directly:

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{g(x)}{f(x)}=\lim _{x \rightarrow \infty} \frac{\ln \left(5^{x}\right)}{2^{x}} \\
=\lim _{x \rightarrow \infty} \frac{x \ln (5)}{2^{x}}=\ln (5) \lim _{x \rightarrow \infty} \frac{x}{2^{x}}
\end{gathered}
$$

the limit on the right has form $\infty \cdot \infty$, so applying L'Hopital's rule,

$$
=\ln (5) \lim _{x \rightarrow \infty} \frac{(x)^{\prime}}{\left(2^{x}\right)^{\prime}}=\ln (5) \lim _{x \rightarrow \infty} \frac{1}{\ln (2) 2^{x}}
$$

This limit has form $1 / \infty$, which gives 0 so

$$
=\ln (5) 0=0 .
$$

So $g \ll f$.
Now consider h. Note that it is $h(x)=x^{\ln (x)}=e^{\ln (x)^{2}}$. Compare with f : write $f(x)=2^{x}=e^{\ln (2) x}$. So,

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{f(x)}{h(x)}=\lim _{x \rightarrow \infty} \frac{e^{\ln (2) x}}{e^{\ln (x)^{2}}} \\
=\lim _{x \rightarrow \infty} e^{\ln (2) x-\ln (x)^{2}} . \\
=e^{\lim _{x \rightarrow \infty} \ln (2) x-\ln (x)^{2}} \\
=e^{L}
\end{gathered}
$$

where

$$
L=\lim _{x \rightarrow \infty} \ln (2) x-\ln (x)^{2} .
$$

Now using the hint with $k(x)=\ln (2) x$ and $j(x)=\ln (x)^{2}$, we have that $\ln (2) x-$ $\ln (x)^{2} \rightarrow \infty$ as $x \rightarrow \infty$, since it's a standard comparison fact that $x \gg$ $\ln (x)^{2}$, and therefore $\ln (2) x \gg \ln (x)^{2}$, since $\ln (2)$ is just a positive constant. Alternatively, computing this,

$$
\lim _{x \rightarrow \infty} \frac{\ln (2) x}{\ln (x)^{2}}=\ln (2) \lim _{x \rightarrow \infty} \frac{x}{\ln (x)^{2}}
$$

which has form ∞ / ∞, so using L'Hopital's rule,

$$
\begin{gathered}
=\ln (2) \lim _{x \rightarrow \infty} \frac{(x)^{\prime}}{\left(\ln (x)^{2}\right)^{\prime}}=\ln (2) \lim _{x \rightarrow \infty} \frac{1}{2 \ln (x)(1 / x)} \\
=(\ln (2) / 2) \lim _{x \rightarrow \infty} \frac{x}{\ln (x)}
\end{gathered}
$$

which still has form ∞ / ∞; repeating L'Hopital's rule,

$$
\begin{gathered}
=(\ln (2) / 2) \lim _{x \rightarrow \infty} \frac{\left.(x)^{\prime}\right)}{(\ln (x))^{\prime}} \\
=(\ln (2) / 2) \lim _{x \rightarrow \infty} \frac{1}{1 / x} \\
=(\ln (2) / 2) \lim _{x \rightarrow \infty} x=\infty .
\end{gathered}
$$

So this shows $\ln (2) x \gg \ln (x)^{2}$. So applying the hint, we have that $\lim _{x \rightarrow \infty} \ln (2) x-$ $\ln (x)^{2}=\infty$. Therefore coming back to computing L, we have

$$
L=\infty
$$

Therefore the original $\operatorname{limit}^{\lim _{x \rightarrow \infty}} \frac{f(x)}{h(x)}=e^{L}=e^{\infty}=\infty$, so $f \gg h$.
For g vs h, we have $g(x)=\ln \left(5^{x}\right)=x \ln (5)=\ln (5) e^{\ln (x)}$, and $h(x)=$ $x^{\ln (x)}=e^{\ln (x)^{2}}$. So

$$
\begin{gathered}
\lim _{x \rightarrow \infty} \frac{h(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{e^{\ln (x)^{2}}}{\ln (5) e^{\ln (x)}} \\
=(1 / \ln (5)) \lim _{x \rightarrow \infty} e^{\ln (x)^{2}-\ln (x)} \\
=(1 / \ln (5)) \lim _{x \rightarrow \infty} e^{\ln (x)(\ln (x)-1)} \\
=(1 / \ln (5)) e^{\lim _{x \rightarrow \infty}(\ln (x)(\ln (x)-1))} \\
=(1 / \ln (5)) e^{L}
\end{gathered}
$$

where

$$
\left.L=\lim _{x \rightarrow \infty} \ln (x)(\ln (x)-1)\right)
$$

And $\ln (x) \rightarrow \infty$ as $x \rightarrow \infty$, so $\ln (x)-1 \rightarrow \infty$ also, so this limit is $\infty \cdot \infty=\infty$, so $L=\infty$, so $(1 / \ln (5)) e^{L}=\infty$, so $h \gg g$.
5.(a) Integrate

$$
\int_{0}^{1} x^{2} 2^{x} d x
$$

(b) Antidifferentiate

$$
\int \sin (3 x) \cos (x / 2) d x
$$

(c) Antidifferentiate

$$
\int \ln (x)^{2} d x
$$

(Hint: note the integrand is not $\ln \left(x^{2}\right)$. Use a method like that used for antidifferentiating $\int \ln (x) d x$.)
Solution.
(a) We use integration by parts. Since integrating or diffing the 2^{x} term leads to the form $k 2^{x}$ for some constant k, it is reasonable to diff the x^{2} term and work its power down to 0 . So let $f(x)=2^{x}$ and $g(x)=x^{2}$. Let $F(x)=\int f(x) d x=\int 2^{x} d x=(1 / \ln (2)) 2^{x}$. We have $g^{\prime}(x)=2 x$. So by integration by parts,

$$
\begin{gathered}
\int=\left.F g\right|_{0} ^{1}-\int_{0}^{1} F g^{\prime} d x \\
=\left.(1 / \ln (2)) 2^{x} x^{2}\right|_{0} ^{1}-\int_{0}^{1}(1 / \ln (2)) 2^{x}(2 x) d x
\end{gathered}
$$

which is $\left({ }^{*}\right)$:

$$
=\frac{1}{\ln (2)}\left[\left.2^{x} x^{2}\right|_{0} ^{1}-2 \int_{0}^{1} 2^{x} x d x\right]
$$

Looking at the remaining integral inside line $\left(^{*}\right)$, this is

$$
\int_{0}^{1} 2^{x} x d x
$$

Integrating by parts again, intergrating the 2^{x} term and diff'ing the x term (note this is in the same "direction" again, reducing the power of the x term); we get

$$
=\left.(1 / \ln (2)) 2^{x} x\right|_{0} ^{1}-\int_{0}^{1}(1 / \ln (2)) 2^{x}(1) d x
$$

which is $\left({ }^{* *}\right)$:

$$
=\frac{1}{\ln (2)}\left[\left.2^{x} x\right|_{0} ^{1}-\int_{0}^{1} 2^{x} d x\right]
$$

And the last integral inside line $\left({ }^{* *}\right)$ is:

$$
\int_{0}^{1} 2^{x} d x=\left.\frac{1}{\ln (2)} 2^{x}\right|_{0} ^{1}
$$

So line (**) equals

$$
\begin{gathered}
=\frac{1}{\ln (2)}\left[\left.2^{x} x\right|_{0} ^{1}-\left.\frac{1}{\ln (2)} 2^{x}\right|_{0} ^{1}\right] \\
\\
=\frac{1}{\ln (2)}\left[\left.2^{x}\left(x-\frac{1}{\ln (2)}\right)\right|_{0} ^{1}\right]
\end{gathered}
$$

So line (*) equals

$$
=\frac{1}{\ln (2)}\left[\left.2^{x} x^{2}\right|_{0} ^{1}-2\left(\frac{1}{\ln (2)}\left[\left.2^{x}\left(x-\frac{1}{\ln (2)}\right)\right|_{0} ^{1}\right]\right)\right]
$$

$$
\begin{gathered}
=\frac{1}{\ln (2)}\left[2^{x} x^{2}-\left(\frac{2}{\ln (2)}\left[\left.2^{x}\left(x-\frac{1}{\ln (2)}\right)\right|_{0} ^{1}\right]\right)\right] . \\
=\frac{1}{\ln (2)}\left[2^{1}\left(1^{2}\right)-\left(\frac{2}{\ln (2)}\left[2^{1}\left(1-\frac{1}{\ln (2)}\right)\right]\right)\right] \\
-\frac{1}{\ln (2)}\left[2^{0}\left(0^{2}\right)-\left(\frac{2}{\ln (2)}\left[2^{0}\left(0-\frac{1}{\ln (2)}\right)\right]\right)\right] \\
=\frac{1}{\ln (2)}\left[2-\left(\frac{2}{\ln (2)}\left[2\left(1-\frac{1}{\ln (2)}\right)\right]\right)\right] \\
-\frac{1}{\ln (2)}\left[0-\left(\frac{2}{\ln (2)}\left[1\left(0-\frac{1}{\ln (2)}\right)\right]\right)\right] \\
=\frac{2}{\ln (2)}+\frac{4}{(\ln (2))^{3}}-\frac{4}{\ln (2)^{2}} \\
\quad-\frac{2}{\ln (2)^{3}} \\
=\frac{2}{\ln (2)}+\frac{2}{\ln (2)^{3}}-\frac{4}{\ln (2)^{2}}
\end{gathered}
$$

(b)

$$
\int \sin (3 x) \cos (x / 2) d x
$$

We use integration by parts. Integrate the sin term and differentiate the cos. This results in:

$$
\begin{aligned}
=- & \frac{1}{3} \cos (3 x) \cos (x / 2)-\int-\frac{1}{3} \cos (3 x) \frac{1}{2}(-\sin (x / 2)) d x \\
& =-\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{6} \int \cos (3 x) \sin (x / 2) d x
\end{aligned}
$$

Now with the remaining integral, again integrate by parts, going in the same direction: the term we integrated in the previous one was $\sin (3 x)$, so we integrate the term this produced, i.e. $\cos (3 x)$:

$$
\begin{aligned}
= & -\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{6}\left[\frac{1}{3} \sin (3 x) \sin (x / 2)-\frac{1}{3} \int \sin (3 x) \frac{1}{2} \cos (x / 2) d x\right] \\
& =-\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{18} \sin (3 x) \sin (x / 2)+\frac{1}{36} \int \sin (3 x) \cos (x / 2) d x
\end{aligned}
$$

The remaining integral is just the original one. So let $I=\int \sin (3 x) \cos (x / 2) d x$. Then we have the equation

$$
I=-\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{18} \sin (3 x) \sin (x / / 2)+\frac{1}{36} I .
$$

Solving for I,

$$
\frac{35}{36} I=-\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{18} \sin (3 x) \sin (x / / 2)
$$

$$
I=\frac{36}{35}\left(-\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{18} \sin (3 x) \sin (x / / 2)\right)
$$

So our final answer is

$$
\int \sin (3 x) \cos (x / 2) d x=\frac{36}{35}\left(-\frac{1}{3} \cos (3 x) \cos (x / 2)-\frac{1}{18} \sin (3 x) \sin (x / / 2)\right)+c .
$$

(c)

$$
\int \ln (x)^{2} d x
$$

We use integration by parts. There are a couple of ways. First by the hint, using the method used for antidifferentiating $\int \ln (x) d x$. So consider $\ln (x)^{2}$ as the product $1 \cdot \ln (x)^{2}$. We integrate the 1 and differentiate the $\ln (x)^{2}$, giving

$$
\begin{gathered}
=x \ln (x)^{2}-\int x(2 \ln (x)(1 / x)) d x \\
=x \ln (x)^{2}-\int 2 \ln (x) d x
\end{gathered}
$$

Using the fact that $\int \ln (x) d x=x \ln (x)-x+d$, we have

$$
\begin{aligned}
& =x \ln (x)^{2}-2(x \ln (x)-x)+c \\
& =x \ln (x)^{2}-2 x \ln (x)+2 x+c
\end{aligned}
$$

Alternatively, one can consider $\ln (x)^{2}$ as the product $\ln (x) \cdot \ln (x)$. Thus:

$$
\int \ln (x) \cdot \ln (x) d x
$$

using integration by parts, using again what $\int \ln (x) d x$ is, written above:

$$
\begin{gathered}
=\ln (x)(x \ln (x)-x)-\int(1 / x)(x \ln (x)-x) d x \\
=x \ln (x)^{2}-x \ln (x)-\int \ln (x)-1 d x \\
=x \ln (x)^{2}-x \ln (x)-(x \ln (x)-x)+x \\
=x \ln (x)^{2}-2 x \ln (x)+2 x+c
\end{gathered}
$$

6.(a) Integrate

$$
\int_{0}^{\pi / 8} \sin ^{4}(4 x) \cos ^{2}(4 x) d x
$$

(b) Antidifferentiate

$$
\int \sec ^{-1 / 3}(x) \tan ^{3}(x) d x
$$

Solution.
(a) We have an integral of a product of even powers of cosine and sine, so we use the identities $\cos ^{2} y=\frac{1}{2}(1+\cos (2 y))$ and $\sin ^{2} y=\frac{1}{2}(1-\cos (2 y))$:

$$
\begin{gathered}
\int=\int\left(\sin ^{2}(4 x)\right)^{2}\left(\frac{1}{2}(1+\cos (2(4 x)))\right) d x \\
=\int\left(\frac{1}{2}(1-\cos (2(4 x)))\right)^{2}\left(\frac{1}{2}(1+\cos (8 x))\right) d x \\
=\int \frac{1}{8}(1-\cos (8 x))^{2}(1+\cos (8 x)) d x \\
=\frac{1}{8} \int\left(1-2 \cos (8 x)+\cos ^{2}(8 x)\right)(1+\cos (8 x)) d x
\end{gathered}
$$

We now expand the terms, as this will result in various powers of $\cos (8 x)$, which we can integrate term by term:

$$
\begin{gathered}
=\frac{1}{8} \int 1-2 \cos (8 x)+\cos ^{2}(8 x)+\cos (8 x)-2 \cos ^{2}(8 x)+\cos ^{3}(8 x) d x \\
=\frac{1}{8} \int 1-\cos (8 x)-\cos ^{2}(8 x)+\cos ^{3}(8 x) d x \\
=\frac{1}{8}\left[\int d x-\int \cos (8 x) d x-\int \cos ^{2}(8 x) d x+\int \cos ^{3}(8 x) d x\right]
\end{gathered}
$$

We can now directly integrate the first two terms. For the $\cos ^{2}(8 x)$ term, we have an even power of $\cos (8 x)$, so we again use the identity $\cos ^{2}(y)=\frac{1}{2}(1+\cos (2 y))$.

$$
\begin{aligned}
= & \frac{1}{8}\left[x-\frac{1}{8} \sin (8 x)-\int \frac{1}{2}(1+\cos (2(8 x))) d x+\int \cos ^{3}(8 x) d x\right] \\
& =\frac{1}{8}\left[x-\frac{1}{8} \sin (8 x)-\frac{1}{2} \int 1+\cos (16 x) d x+\int \cos ^{3}(8 x) d x\right]
\end{aligned}
$$

This results in (*):

$$
=\frac{1}{8}\left[x-\frac{1}{8} \sin (8 x)-\frac{1}{2}\left(x+\frac{1}{16} \sin (16 x)\right)+\int \cos ^{3}(8 x) d x\right] .
$$

For the $\cos ^{3}(8 x)$ term, we have an odd power of $\cos (8 x)$, so we sub $u=\sin (8 x)$, separating one power of $\cos (8 x)$ for the $d u$ term and writing the rest in terms of $u=\sin (8 x)$:

$$
\begin{gathered}
\int \cos ^{3}(8 x) d x=\int \cos (8 x) \cos ^{2}(8 x) d x=\int \cos (8 x)\left(1-\sin ^{2}(8 x)\right) d x \\
=\int\left(1-u^{2}\right) \cos (8 x) d x
\end{gathered}
$$

Since $d u=8 \cos (8 x) d x$, we have

$$
\begin{gathered}
=\int\left(1-u^{2}\right)(d u / 8)=\frac{1}{8} \int 1-u^{2} d u \\
=\frac{1}{8}\left(u-\frac{1}{3} u^{3}\right)+c
\end{gathered}
$$

$$
=\frac{1}{8}\left(\sin (8 x)-\frac{1}{3} \sin ^{3}(8 x)\right)+c
$$

Putting this back into line $\left(^{*}\right)$ we get the original integral is (and including the bounds again):
$\int_{0}^{\pi / 8} f(x) d x=\left.\frac{1}{8}\left[x-\frac{1}{8} \sin (8 x)-\frac{1}{2}\left(x+\frac{1}{16} \sin (16 x)\right)+\frac{1}{8}\left(\sin (8 x)-\frac{1}{3} \sin ^{3}(8 x)\right)\right]\right|_{0} ^{\pi / 8}$
Now at $x=0$ we have $\sin (8 x)=\sin (16 x)=0$. At $x=\pi / 8$ we have $\sin (8 x)=$ $\sin (8 \pi / 8)=\sin (\pi)=0$ and $\sin (16 x)=\sin (16(\pi / 8))=\sin (2 \pi)=0$. So all the sin terms evaluate to 0 when we plug in the bounds, leaving only the x terms remaining, and when $x=0$ this term also evaluates to 0 (but not when $x=\pi / 8)$:

$$
\begin{gathered}
=\frac{1}{8}\left[\pi / 8-0-\frac{1}{2}(\pi / 8+0)+\frac{1}{8}(0-0)\right]-\frac{1}{8}[0] \\
=\frac{1}{8}\left(\pi / 8-\frac{1}{2}(\pi / 8)\right)=\frac{\pi}{128}
\end{gathered}
$$

(b) Antidifferentiate

$$
\int \sec ^{-1 / 3}(x) \tan ^{3}(x) d x
$$

We have a product of powers of sec and tan, with an odd positive power of tan. So we use the method of substituting $u=\sec (x)$, separating $\sec (x) \tan (x)$ from the integrand for the $d u$ term:

$$
=\int \sec ^{-1 / 3}(x)(\sec (x))^{-1} \sec (x) \tan (x) \tan ^{2}(x) d x
$$

Sub $u=\sec (x)$, so $d u=\sec (x) \tan (x) d x$:

$$
=\int \sec ^{-4 / 3}(x) \tan ^{2}(x) d u
$$

Use $\tan ^{2}(x)+1=\sec ^{2}(x)$, so $\tan ^{2}(x)=\sec ^{2}(x)-1=u^{2}-1$, and $\sec ^{-4 / 3}(x)=$ $u^{-4 / 3}$:

$$
\begin{gathered}
=\int u^{-4 / 3}\left(u^{2}-1\right) d u \\
=\int u^{-4 / 3} u^{2}-u^{-4 / 3} d u \\
=\int u^{2 / 3}-u^{-4 / 3} d u \\
=(3 / 5) u^{5 / 3}+3 u^{-1 / 3}+c \\
=(3 / 5) \sec (x)^{5 / 3}+3 \sec (x)^{-1 / 3}+c .
\end{gathered}
$$

7.(a) Antidifferentiate, simplifying fully.

$$
\int\left(1-3 x^{2}\right)^{3 / 2} d x
$$

(b) Integrate

$$
\int_{0}^{1} \frac{x^{3}}{1+x^{2}} d x
$$

(c) Antidifferentiate:

$$
\int \frac{x}{\left(x^{2}-2\right)^{25 / 2}} d x .
$$

Solution.

$$
\int\left(1-3 x^{2}\right)^{3 / 2} d x
$$

There is no immediate substitution that will be useful for this integral. So we a trig sub. The form $a-b x^{2}$ appears in the integrand, with $1-3 x^{2}=1-(\sqrt{3} x)^{2}$, so we use the sub $x=\frac{1}{\sqrt{3}} \sin (\theta)$. Thus, we get $d x=\frac{1}{\sqrt{3}} \cos (\theta) d \theta$, and $1-3 x^{2}=$ $1-3\left(\frac{1}{\sqrt{3}}\right)^{2} \sin (\theta)^{2}=1-\sin (\theta)^{2}=\cos (\theta)^{2}$, so

$$
\begin{aligned}
= & \int\left(\cos (\theta)^{2}\right)^{3 / 2} \cos (\theta) d \theta \\
& =\int|\cos (\theta)|^{3} \cos (\theta) d \theta
\end{aligned}
$$

For subbing $x=\sin (\theta)$, we use the interval $-\pi / 2 \leq \theta \leq \pi / 2$ (the right side of the circle, where $\sin (\theta)$ goes through all values from -1 to 1), and so $\cos (\theta) \geq 0$, so $|\cos (\theta)|=\cos (\theta)$:

$$
=\int \cos (\theta)^{3} \cos (\theta) d \theta
$$

This is an even power of $\cos (\theta)$, so we use the identity $\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))$:

$$
\begin{gathered}
=\int\left(\cos (\theta)^{2}\right)^{2} d \theta \\
=\int\left(\frac{1}{2}(1+\cos (2 \theta))\right)^{2} d \theta \\
=\int \frac{1}{4}\left(1+2 \cos (2 \theta)+\cos ^{2}(2 \theta)\right) d \theta
\end{gathered}
$$

For the $\cos ^{2}(2 \theta)$ term, we again use the same identity (but with 2θ in place of θ), giving:

$$
\begin{gathered}
=\int \frac{1}{4}\left(1+2 \cos (2 \theta)+\frac{1}{2}(1+\cos (2(2 \theta)))\right) d \theta \\
=\int \frac{1}{4}\left(1+2 \cos (2 \theta)+\frac{1}{2}+\frac{1}{2} \cos (4 \theta)\right) d \theta \\
\quad=\frac{1}{4} \int \frac{3}{2}+2 \cos (2 \theta)+\frac{1}{2} \cos (4 \theta) d \theta \\
=\frac{1}{4}\left[\frac{3}{2} \theta+2\left(\frac{1}{2} \sin (2 \theta)\right)+\frac{1}{2}\left(\frac{1}{4} \sin (4 \theta)\right)\right]+c \\
\quad=\frac{3}{8} \theta+\frac{1}{4} \sin (2 \theta)+\frac{1}{32} \sin (4 \theta)+c
\end{gathered}
$$

Now we need to rewrite everything in terms of x. We subbed $x=\sin (\theta)$, with the interval $-\pi / 2 \leq \theta \leq \pi / 2$, so this is equivalent to $\arcsin (x)=\theta$. So

$$
=\frac{3}{8} \arcsin (x)+\frac{1}{4} \sin (2 \theta)+\frac{1}{32} \sin (4 \theta)+c
$$

For $\sin (2 \theta)$, use the identity $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$, and, similarly,

$$
\sin (4 \theta)=2 \sin (2 \theta) \cos (2 \theta)=2 \sin (\theta) \cos (\theta) \cos (2 \theta)
$$

giving (*):

$$
=2 \sin (\theta) \cos (\theta)\left(\cos ^{2}(\theta)-\sin ^{2}(\theta)\right)
$$

(using also the identity $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$). Thus, everything has been written in terms of $\sin (\theta)$ and $\cos (\theta)$. We need to write these in terms of x. We have $\sin (\theta)=x$, so that's fine. For $\cos (\theta)$, use a reference triangle, or the Pythagorean identity

$$
\begin{gathered}
\sin ^{2}(\theta)+\cos ^{2}(\theta)=1 \\
x^{2}+\cos ^{2}(\theta)=1 \\
\cos ^{2}(\theta)=1-x^{2} \\
|\cos (\theta)|=\sqrt{1-x^{2}}
\end{gathered}
$$

and again, as mentioned above, $\cos (\theta) \geq 0$, so

$$
\cos (\theta)=\sqrt{1-x^{2}}
$$

So:

$$
\sin (4 \theta)=2 x \sqrt{1-x^{2}}\left({\sqrt{1-x^{2}}}^{2}-x^{2}\right)=2 x \sqrt{1-x^{2}}\left(1-2 x^{2}\right)
$$

So putting everything together, the antiderivative is

$$
\begin{gathered}
\frac{3}{8} \theta+\frac{1}{4} \sin (2 \theta)+\frac{1}{32} \sin (4 \theta)+c \\
=\frac{3}{8} \arcsin (x)+\frac{1}{4} 2 x \sqrt{1-x^{2}}+\frac{1}{32} 2 x \sqrt{1-x^{2}}\left(1-2 x^{2}\right) .
\end{gathered}
$$

(b)

$$
\int_{0}^{1} \frac{x^{3}}{1+x^{2}} d x
$$

Here there is no direct substitution for the integral. The term $1+x^{2}$ appears in the denominator, so we try a trig sub with $x=\tan (\theta)$. This gives $d x=\sec ^{2}(\theta) d \theta$ and $1+x^{2}=1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$. So:

$$
\begin{gathered}
=\int_{x=0}^{1} \frac{\tan ^{3}(\theta)}{\sec ^{2}(\theta)} \sec ^{2}(\theta) d \theta \\
=\int_{x=0}^{1} \tan ^{3}(\theta) d \theta
\end{gathered}
$$

This is an odd power of tan, which we deal with as for products of powers of tan and sec. So, since it's an odd power, we sub $u=\sec (\theta)$, separating $\sec (\theta) \tan (\theta)$ to facilitate this:

$$
=\int_{x=0}^{1} \sec (\theta)^{-1} \tan ^{2}(\theta) \tan (\theta) \sec (\theta) d \theta
$$

We have $d u=\tan (\theta) \sec (\theta) d \theta$. Use $\tan ^{2}(\theta)+1=\sec ^{2}(\theta)$, to write $\tan ^{2}(\theta)=$ $\sec ^{2}(\theta)-1=u^{2}-1$:

$$
\begin{gathered}
=\int_{x=0}^{1} u^{-1}\left(u^{2}-1\right) d u \\
=\int_{x=0}^{1} u-u^{-1} d u \\
=\frac{1}{2} u^{2}-\left.\ln (|u|)\right|_{x=0} ^{1} \\
=\frac{1}{2} \sec ^{2}(\theta)-\left.\ln (|\sec (\theta)|)\right|_{x=0} ^{1}
\end{gathered}
$$

Now we subbed $x=\tan (\theta)$, which means we are restricted to $-\pi / 2<\theta<\pi / 2$. Our actual interval of integration is $x=0$ to $x=1$. For $x=0$, this gives $0=\tan (\theta)$, and $-\pi / 2<\theta<\pi / 2$, i.e. $\theta=\arctan (0)$, so $\theta=0$. And for $x=1$, we have $\theta=\arctan (1)$, i.e. $-\pi / 2<\theta<\pi / 2$ and $\tan (\theta)=1$, i.e. $\theta=\pi / 4$. So

$$
=\frac{1}{2} \sec ^{2}(\theta)-\left.\ln (|\sec (\theta)|)\right|_{\theta=0} ^{\pi / 4}
$$

Now when $\theta=\pi / 4$ we have $\sec (\theta)=\sec (\pi / 4)=1 / \cos (\pi / 4)=2 / \sqrt{2}$. When $\theta=0$ we have $\sec (\theta)=1 / \cos (0)=1 / 1=1$. So

$$
\begin{gathered}
=\frac{1}{2}(2 / \sqrt{2})^{2}-\ln (|2 / \sqrt{2}|)-\frac{1}{2}\left(1^{2}\right)+\ln (|1|) \\
=\frac{1}{2}(4 / 2)-\ln (\sqrt{2})-\frac{1}{2}+0 \\
=1-\frac{1}{2} \ln (2)-\frac{1}{2} \\
=\frac{1}{2}(1-\ln (2))
\end{gathered}
$$

(Note $1>\ln (2)$ so this is positive, as it should be, since the integrand was positive over $0<x<1$.)
(c)

$$
\int \frac{x}{\left(x^{2}-2\right)^{25 / 2}} d x
$$

Here we can just use a regular sub of $u=x^{2}-2$. For this gives $d u=2 x d x$, so $d u / 2=x d x$, so

$$
\begin{gathered}
=\int \frac{d u / 2}{u^{25 / 2}} \\
=\frac{1}{2} \int u^{-25 / 2} d u \\
=\frac{1}{2} \frac{1}{-23 / 2} u^{-23 / 2}+c . \\
=\frac{-1}{23}\left(x^{2}-2\right)^{-23 / 2}+c .
\end{gathered}
$$

