I was discussing the general partial fraction form for the case of the denominator $q(x)$ factoring fully into real linear factors. I wrote out the factorization of $q(x)$ as

$$
q(x)=c\left(x-c_{1}\right)^{m_{1}}\left(x-c_{2}\right)^{m_{2}} \ldots\left(x-c_{k}\right)^{m_{k}},
$$

where we're assuming c and each c_{i} are real numbers and each m_{i} is a positive integer. (This factorization is really into powers of real linear factors, but if we can factor to this form then we can also literally factor to a product of linear factors, by writing each power $\left(x-c_{i}\right)^{m_{i}}$ out as $\left(x-c_{i}\right)\left(x-c_{i}\right) \ldots\left(x-c_{i}\right)$.)

I was allowing $q(x)$ to have repeated roots, so it's possible to have some (or all) of the exponents $m_{i}>1$. So the roots for $q(x)$ are $c_{1}, c_{2}, \ldots, c_{k}$. In class I said something like that these roots c_{i} were listed "without repetition" (i.e. that for $i \neq j$ we have $\left.c_{i} \neq c_{j}\right)$. This might have sounded like I was saying $q(x)$ had no repeated roots, but it doesn't say this. It just means that each root is listed once, no matter how many times it's actually repeated as a root of $q(x)$, i.e. no matter what the powers m_{i} are. So, e.g., if $q(x)=x^{3}(x-2)^{5}(x+7)$, then q has 3 distinct roots, $c_{1}=0, c_{2}=2$, and $c_{3}=-7$. So the list has just $k=3$ elements, with each root listed just once. (Even though $c_{1}=0$ and $c_{2}=2$ are repeated roots of $q(x)$.)

Note that if in this setup (with q 's roots being $c_{1}, c_{2}, \ldots, c_{k}$, each listed only once), we have that m_{i} is the multiplicity of c_{i}, and c_{i} is a repeated root of $q(x)$ iff $m_{i}>1$.

