
Summary of topics covered in course:

Open/closed subsets of R
Metric spaces
Countability and uncountability
Cantor set
Topological spaces
Bases
Interior, Closure
Continuity
Separation axioms
Product, subspace topologies
Connectedness
Compactness
Density (this came up in a few exercises; you should know the definition - it’s
in homework 7, problem 6 - that particular problem was not required for 4500,
but you should still be comfortable with the definition).

Review Problems - I may add some more over the next few days

On Thursday, Steve will discuss (1) any questions that you have on the ma-
terial and/or related exercises from homeworks or whatever; (2) a selection of
these problems. I doubt there will be time to discuss them all so you should
give the questions a look over and think about which ones you would prefer
to discuss on Thursday, and in general, any questions that you want to ask.
(The problems focus more on more recent material; all material covered will be
examinable but you should look more at the older reviews/midterms and/or in
Munkres for more problems on that material. There are a few problems here
on the older material though, but some of them you’ve seen before.)

1. Let τ be the topology on R with base τstd ∪ {{q}|q ∈ Q}. Let (R2, ρ) be
the product of the spaces (R, τ) × (R, τ). How does the closure of a subset of
R2, with respect to ρ, relate to its closure with respect to the standard topology
on R2?

2. Let C ⊆ R and A = {(xy, y/ sin(x)) | (x, y) ∈ [π/4, 3π/4] × C}. Show
that if C = [0, 5] then A is both compact and connected. Show that if C is the
Cantor set then A is compact but not connected.

3. (a) Let X = C([0, 1]) with “max difference” metric topology. Let A ⊆ X
be the set of quadratic functions (with domain [0, 1]) and linear functions (with
domain [0, 1]). Show that A is connected.
(b) Give an example of a non-connected subset of C([0, 1]).
(c) Same topology, show that it’s T4.

4. Let (X, τ) be a T2 topological space such that X is compact. Show that
the space is T3.

5. Let C be the Cantor set.
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Is there
(a) an onto function f : N→ C?
(b) an onto function f : R→ C?
(c) an onto function f : C → R?
(d) a continuous onto function f : N→ C? (where it’s the discrete topology on
N and restriction of standard on C)
(e) a continuous onto function f : R→ C? (standard topology on R)
(f) a continuous onto function f : C → R?

6. Let (X, d) be a metric space. Recall that a subset D ⊆ X is dense iff for
every non-empty open set U , U ∩D 6= ∅. Show that X has a countable dense
subset iff X has a countable base.

7. Let X1, X2 be top spaces and A1 ⊆ X1, A2 ⊆ X2. Show that Cl(A1 ×
A2) = Cl(A1)× Cl(A2).

8. Let A ⊆ R be an open set. Show that there is some J ⊆ N and a family
〈Ii〉i∈J of pairwise disjoint open intervals (i.e. i 6= j ∈ J =⇒ Ii∩ Ij = ∅) such
that A = ∪i∈NIi (note the family is required to be countable).

9. (a) Using the original definition of “closure” (i.e. the closure of a set A is
the intersection of all closed sets B such that A ⊆ B), prove the characterization
of closure given in class, i.e. prove that a point x is in the closure of A iff for
every open set W such that x ∈W , we have that W ∩A 6= ∅.

(b) The boundary of a set A is B = Cl(A) − Int(A). Is it possible for the
boundary to have non-empty interior, i.e. for Int(B) 6= ∅?

10. Show that if A is connected subset of a topological space, and A ⊆ B ⊆
Cl(A), then B is also connected.

11.(a) Prove that in Rn, every open ball is connected.
(b) Now if you did (a) by showing that every open ball is in fact path-

connected, then do it again, without using path-connectedness. (Hint: show
first that if [a, b] × [c, d] is connected for any reals a < b and c < d. Combine
this with Munkres’ §23 exercise 2.)

12. Let (X1, τ1), (X2, τ2) be two topological spaces such that X1 ∩X2 = ∅.
Fix x1 ∈ X1 and x2 ∈ X2. We’ll describe a way to “join” these two spaces,
to form a single space, in which x1 and x2 represent the same point. We are
joining the spaces “at” the points x1 and x2. Let a be some object such that
a /∈ X1 ∪X2.

Define a topological space (X ′1, τ
′
1) to be essentially the same as (X1, τ1),

except that we replace the point x1 with a. That is, first define X ′1 as:

X ′1 = (X1 − {x1}) ∪ {a}.

Let f : X ′1 → X1 be the map given by f(x) = x for x ∈ X ′1−{a}, and f(a) = x1.
Now define τ ′1 by:

τ ′1 = {f−1(W ) | W ∈ τ1}.

This defines (X ′1, τ
′
1). Similarly, let (X ′2, τ

′
2) be the space given by replacing

x2 ∈ X2 with a.
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It’s straightforward to check that (X ′1, τ
′
1) and (X ′2, τ

′
2) are topological spaces,

and X ′1 ∩X ′2 = {a}.
Now define a new topological space (X, τ) by “joining” the two spaces at

their common point a. That is, let

X = X ′1 ∪X ′2,

and given W ⊆ X, let W ∈ τ iff both (W ∩X ′1) ∈ τ ′1 and (W ∩X ′2) ∈ τ ′2.
So (X, τ) is the result of “joining” (X1, τ1) to (X2, τ2), “at” the points x1 and

x2. (Remark: in terms of the topologies, it doesn’t matter what the underlying
points actually are, it just matters what the topological structure is. Although
we’ve changed the identities of x1 and x2 to a, we’ve preserved the topological
structures of the original X1 and X2, on each of their “sides” of the space X.
Now for the problems:

(a) Show that (X, τ) is a topological space.
(b) Describe the interior and closure operations of X in terms of those for

X1 and X2.
(c) Show that X is compact (or connected, or path-connected) (w.r.t. τ) iff

both X1 and X2 are compact (or connected, or path-connected) (w.r.t. τ1 and
τ2)

(d) Suppose X1 = R and X2 = R2, x1 = 0 and x2 = (0, 0). Give a subset
of A ⊆ R3, and a bijection f : X → A, and f is continuous, and f−1 is
continuous. (This is a homeomorphism, a bijection which exactly preserves
topological structure; i.e. U is open iff f“U is open.)
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