
Summary of topics covered in course:

Open/closed subsets of R
Metric spaces
Countability and uncountability
Cantor set
Topological spaces
Bases
Interior, Closure
Continuity
Separation axioms
Product, subspace topologies
Connectedness
Compactness
Density (this came up in a few exercises; you should know the definition - it’s
in homework 7, problem 6 - that particular problem was not required for 4500,
but you should still be comfortable with the definition).

Review Problems - I may add some more over the next few days

On Thursday, Steve will discuss (1) any questions that you have on the ma-
terial and/or related exercises from homeworks or whatever; (2) a selection of
these problems. I doubt there will be time to discuss them all so you should
give the questions a look over and think about which ones you would prefer
to discuss on Thursday, and in general, any questions that you want to ask.
(The problems focus more on more recent material; all material covered will be
examinable but you should look more at the older reviews/midterms and/or in
Munkres for more problems on that material. There are a few problems here
on the older material though, but some of them you’ve seen before.)

1. Let τ be the topology on R with base τstd ∪ {{q}|q ∈ Q}. Let (R2, ρ) be
the product of the spaces (R, τ) × (R, τ). How does the closure of a subset of
R2, with respect to ρ, relate to its closure with respect to the standard topology
on R2?
Solution.
Let A ⊆ R2. Then for any x ∈ R2, x ∈ Cl(A) iff for every open set W such that
x ∈ A, we have A ∩W 6= ∅. (Here “open” means W ∈ ρ.)

Let τstd,1 be the standard top on R and τstd,2 the standard top on R2. Then
τstd,2 is the product of τstd,1 with itself.

Claim 1: τstd,2 ⊆ ρ. Proof: Let W ∈ τstd,2. Given x ∈ W , there are
W1,W2 ∈ τstd,1 such that x ∈ W1 ×W2 ⊆ W , but τstd,1 ⊆ τ by the definition
of τ , so W1,W2 ∈ τ . But then W1 ×W2 ∈ ρ. Since x ∈ W was arbitrary, we
have that W is a union of elements of ρ, and since ρ is a topology, W ∈ ρ, as
required.

Claim 2: Cl(A) ⊆ Clstd,2(A), where Clstd,2(A) is the closure of A with respect
to the standard topology on R2. Proof: Suppose x ∈ Cl(A). Let W ∈ τstd,2
such that x ∈ W . By Claim 1, W ∈ ρ. Since x ∈ Cl(A) and x ∈ W ∈ ρ, we
have W ∩A 6= ∅.

Now let x ∈ Clstd,2(A); we will determine under what conditions x ∈ Cl(A).
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Case 1. x ∈ A. Then x ∈ Cl(A) as we always have A ⊆ Cl(A) (since Cl(A)
is the smallest closed set which is a superset of A).

Case 2. x /∈ A and x ∈ Q2. Then x /∈ Cl(A).
Proof: Note that {x} ∈ ρ, since if x = (q, r) we have q, r ∈ Q, and {q} ∈ τ

and {r} ∈ τ , so {x} = {q} × {r} ∈ ρ. But since x /∈ A, we have {x} ∩ A = ∅,
and since x ∈ {x} ∈ ρ, this implies so x /∈ Cl(A).

Case 3. x /∈ A and x ∈ (R−Q)× (R−Q). Then x ∈ Cl(A).
Proof: Let W ∈ ρ be such that x ∈ W . Since x ∈ W ∈ ρ, we have

W1,W2 ∈ τ such that x ∈ W1 ×W2 ⊆ W and W1,W2 ∈ τ . We have x = (y, z)
with y, z ∈ R−Q. Since y ∈W1 ∈ τ , we have some W ′1 in the given base for τ ,
such that y ∈W ′1 ⊆W1. But since y /∈ Q, this implies W ′1 ∈ τstd,1. Similarly, we
have W ′2 ∈ τstd,1 such that z ∈W ′2 ⊆W2. But then x = (y, z) ∈W ′1 ×W ′2 ⊆W
(⊆W since W ′1 ⊆W1 and W ′2 ⊆W2 and W1×W2 ⊆W ). And W ′1×W ′2 ∈ τstd,2.
Since x ∈W ′1×W ′2 and x ∈ Clstd,2(A), this implies W ′1×W ′2 ∩A 6= ∅, and since
W ′1 ×W ′2 ⊆W , this implies W ∩A 6= ∅, as required.

Case 4. x /∈ A and x ∈ Q× (R−Q).
In this case, we don’t have enough information to determine whether x ∈ Cl(A).
But let x = (q, z), so we have q ∈ Q and z ∈ R − Q. Let Aq = A(∩{q} × R).
Then Claim: x ∈ Cl(A) iff x ∈ Clstd,2(Aq).

Proof: Suppose x ∈ Cl(A). Let W ∈ τstd,2 such that x ∈W . We must show
that W ∩Aq 6= ∅. We have W1,W2 ∈ τstd,1 such that x ∈W1 ×W2 ⊆W . Note
that {q} × R ∈ ρ and W1 ×W2 ∈ ρ, and since x ∈ W1 ×W2, we have q ∈ W1.
And also x ∈ {q} × R. So

x ∈ ({q} × R) ∩ (W1 ×W2) = {q} ×W2 ∈ ρ.

Since x ∈ Cl(A), this implies {q} ×W2 ∩ A 6= ∅, but {q} ×W2 ⊆ {q} × R, so
{q}×W2∩Aq 6= ∅, and q ∈W1 and W1×W2 ⊆W , so W ∩A1 6= ∅, as required.

Now suppose x ∈ Clstd,2(Aq). Let W ∈ ρ with x ∈ W . We must show
W ∩ A 6= ∅. There are W1,W2 ∈ τ such that x = (q, z) ∈ W1 × W2 ⊆ W .
So there are W ′1,W

′
2 in the given base for τ such that q ∈ W ′1 ⊆ W1 and

z ∈W ′2 ⊆W2. Since z /∈ Q, we must have W ′2 ∈ τstd. Therefore R×W ′2 ∈ τstd,2.
Since x ∈ Clstd,2(Aq), this implies Aq ∩ (R ×W ′2) 6= ∅. Since Aq ⊆ {q} × R,
this implies Aq ∩ ({q} ×W ′2) 6= ∅. But ({q} ×W ′2) ⊆ (W ′1 ×W ′2) since q ∈ W ′1
since x = (q, z) ∈ W ′1 ×W ′2. Therefore Aq ∩ (W ′1 ×W ′2) 6= ∅. But Aq ⊆ A and
W ′1 ×W ′2 ⊆W1 ×W2 ⊆W , so therefore A ∩W 6= ∅, as required.

Case 5. x /∈ A and x ∈ ((R−Q)×Q).
By symmetry, this is the reflected version of Case 4.

This completes all cases.

(So for example, in the case that A is the open unit disk, then Cl(A) consists
of all points x such that either: (1) x ∈ A, or (2) x is on the unit circle, and
x /∈ Q×Q.

But for example, if A is the unit disk subtract the vertical line x = 0.1 (note
that the points (0.1,±

√
0.99) lie on the unit circle and

√
0.99 is irrational), then

Cl(A) consists of all points p such that either: (1) p ∈ A, or (2) p is on the
unit circle, and p 6= (0.1,±

√
0.99), or (3) p is on the vertical line x = 0.1, with

p = (0.1, r) for some irrational r, such that −
√

0.99 < r <
√

0.99 (i.e. so that p
is in the interior of the unit disk).)
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2. Let C ⊆ R and A = {(xy, y/ sin(x)) | (x, y) ∈ [π/4, 3π/4] × C}. Show
that if C = [0, 5] then A is both compact and connected. Show that if C is the
Cantor set then A is compact but not connected.
Solution.
The product of closed sets is closed in the product topology. (This was in a
problem in midterm 2; but here there’s less to verify: if C1 ⊆ X1 and C2 ⊆ X2

are both closed sets w.r.t. (X1, τ1) and (X2, τ2) respectively, and (x1, x2) ∈
(X1 × X2) − (C1 × C2) then since X1 − C1 ∈ τ1 and X2 − C2 ∈ τ2, then
W = (X1 − C1) × (X2 − C2) ∈ ρ, where ρ is the product topology given by
τ1, τ2, and (C1 × C2) ∩W = ∅, and (x1, x2) ∈ W . Therefore C1 × C2 is closed
w.r.t. ρ.)

So for either C the Cantor set or C = [0, 5], it follows that C × [π/4, 3π/4]
is closed in R2, since both C and [π/4, 3π/4] are closed (recall the standard
topology on R2 is identical to the product of τstd,1 with τstd,1).

Moreover, C × [π/4, 3π/4] ⊆ B((0, 0), 10), so this set is bounded.
Since a subset of R2 is compact iff it is closed and bounded, we have that

this set is compact.
Now suppose C = [0, 5]. Then both C and [π/4, 3π/4] are connected since

intervals ⊆ R are connected. Since the product of connected sets is connected,
C × [π/4, 3π/4] is a connected subset of R2.

Let A = C × [π/4, 3π/4]. Since A is a connected set w.r.t. (R2, τstd,2), it
follows that the subspace (A, τstd,2 �A) is a connected space. It is also a compact
space, i.e. A is a compact subset of this subspace. This is a general fact:

Lemma. Let (X, τ) be a top space and B ⊆ X. Then B is a compact set
w.r.t. (X, τ) iff B is compact w.r.t. (B, τ �B).

Proof. Suppose B is compact w.r.t. (X, τ). Let 〈Ui〉i∈I be an open cover
coming from the subspace topology. Then for each i ∈ I there is Vi ∈ τ such
that Ui = Vi ∩ B. Fix such Vi’s. Then since B ⊆ ∪i∈IUi and Ui ⊆ Vi, we have
B ⊆ ∪i∈IVi. So 〈Vi〉i∈I is an open cover of B. Since B is compact w.r.t. (X, τ),
there are finitely many i’s in I, i1, . . . , in, such that B ⊆ Vi1 ∪ . . . ∪ Vin . But
then

B ∩B ⊆ (Vi1 ∪ . . . ∪ Vi1) ∩B

and B ∩B = B so
B ⊆ (Vi1 ∩B) ∪ . . . ∪ (Vin ∩B)

and Ui = Vi ∩B so
B ⊆ Ui1 ∪ . . . ∪ Uin .

Therefore {Ui1 , . . . , Uin} is a finite subcover of B from the family 〈Ui〉i∈I . There-
fore B is compact w.r.t. (B, τ �B).

Conversely, suppose B is compact w.r.t. (B, τ �B). Let 〈Vi〉i∈I be an open
cover of B w.r.t. τ , i.e. Vi ∈ τ for each i ∈ I and B ⊆ ∪i∈IVi. Let Ui = Vi ∩B.
Then Ui ∈ τ �B for each i ∈ I, and since B ⊆ ∪i∈IVi, we have

B ∩B ⊆ (
⋃
i∈I

Vi) ∩B

B ⊆
⋃
i∈I

(Vi ∩B) =
⋃
i∈I

Ui.
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Therefore by compactness w.r.t. (B, τ �B), there are finitely many i1, . . . , in ∈ I
such that

B ⊆ Ui1 ∪ . . . ∪ Uin ,

but Ui ⊆ Vi for each i, so

B ⊆ Vi1 ∪ . . . ∪ Vin ,

so {Vi1 , . . . , Vin} form a finite subcover of B from 〈Vi〉i∈I , as required.
This proves the Lemma. So (A, τstd,2 � A) is a compact space (i.e. A is

a compact subset of this space), and is also a connected space. Therefore it
suffices to show that the function f : A→ R2, given by f(x, y) = (xy, y/ sin(x)),
is continuous, since the continuous image of a connected set is connected, and
the continuous image of a compact set is compact, and the set in question is
f“A.

The continuity of f can be shown directly with the ε-δ definition, or as
follows. By a homework exercise (from the homework on product topology), it
suffices to show that each component is continuous into R; i.e. that f1 : A→ R
by f1(x, y) = xy is continuous, and that f2 : A → R by f2(x, y) = y/ sin(x),
are both continuous. And by a fact given in class, we can combine continuous
functions by the arithmetic operations, and produce more continuous functions,
as long as we don’t divide by 0. So, if we know that f1,1 : A → R, f1,1(x, y) =
x and f1,2 : A → R, f1,2(x, y) = y, are both continuous, then so is their
product f1(x, y) = xy = f1,1(x, y)f1,2(x, y). But if we define f ′1,1 : R2 → R
by f ′1,1(x, y) = x, then by the same homework on the product topology, f ′1,1
is continuous. And I think by another homework problem, this implies f1,1
is also continuous. (That is, we have the following: Lemma: if h : X → Y
is continuous w.r.t. the topological spaces (X, τ) and (Y, σ) and B ⊆ X, then
(f �B) : B → Y is continuous w.r.t. (B, τ �B) and (Y, σ); this is straightforward
to prove, much like the lemma above on compactness.) Since f ′1,1 is continuous,
the lemma stated in parentheses implies that f1,1 is also continuous. Similarly,
f1,2 is continuous. Therefore f1 is continuous. We similarly have that f2 is

continuous, using also that f2(x, y) =
f1,2(x,y)

sin(f1,1(x,y)
, and that sin : R → R is

continuous, and that compositions of continuous functions are continuous, and
that sin(x) 6= 0 for x ∈ [π/3, 3π/4]. So finally, f is continuous, as required.

Now suppose C is the Cantor set. Then as discussed earlier, A = C ×
[π/4, 3π/4] is compact. So again using the continuity of f , we have that
the set in question, f“A, is compact. However, C is not connected: the
sets C ∩ (1/2,∞) and C ∩ (−∞, 1/2) form a separation of the Cantor space
(C, τstd,1 �C). And in fact f“A is also not connected. (But the continuous im-
age of a non-connected set can be connected, so we need to establish this.) For
y ∈ C, let Ay = A∩R×{y}, and By = f“Ay = {(xy, y/ sin(x))|x ∈ [π/4, 3π/4]}.
Then if y = 0 then By = {(0, 0)}, and if y > 0 then the vertically lowest point
of By is ((π/2)y, y/ sin(π/2)) = (yπ/2, y), since sin(x) reaches its maximum
value 1 over the interval [π/4, 3π/4] at x = π/2. Likewise, By has its verti-
cally highest points at the endpoints ((π/4)y, y/ sin(π/4)) = (yπ/4, y

√
2), and

((3π/4)y, y/ sin(3π/4)) = (3yπ/4, y
√

2). Therefore if y ≤ 1/3, then every point
in By has vertical height ≤ the highest points of B1/3, i.e. height at most

(1/3)
√

2. So if we let U1 = R× (−∞,
√
2
3 + 0.000001) then for y ≤ 1/3 we have

By ⊆ U1 and U1 is open in R2. And if y ≥ 2/3, then every point in By has
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vertical height ≥ the lowest point of B2/3, i.e. height at least (2/3). So letting
U2 = R × ((2/3) − 0.000001,∞), then for y ≥ 2/3, By ⊆ U2. But B = f“A
is the union of the various sets By, for y ∈ C. And each y ∈ C is such that
either y ≤ 1/3 or y ≥ 2/3. Therefore B =

⋃
y∈C,y≤1/3By ∪

⋃
y∈C,y≥2/3By,

which is ⊆ U1 ∪ U2. And
√
2
3 + 0.000001 < 2

3 − 0.000001, so U1 ∩ U2 = ∅, and
U1, U2 ∈ τstd,2. Therefore U1, U2 separate B. So B is disconnected.

3. (a) Let X = C([0, 1]) with “max difference” metric topology. Let A ⊆ X
be the set of quadratic functions (with domain [0, 1]) and linear functions (with
domain [0, 1]). Show that A is connected.
(b) Give an example of a non-connected subset of C([0, 1]).
(c) Same topology, show that it’s T4.
Solution.
(a) (Originally I had written just quadratic functions, but I should have said
quadratic functions together with linear functions.)
We will in fact show that A is path-connected. This suffices since every path-
connected set is connected.

Let f, g be two quadratic or linear functions, mapping [0, 1] → R. Then
there are constants a0, a1, a2 such that

f(z) = a0 + a1z + a2z
2

and constants b0, b1, b2 such that

g(z) = b0 + b1z + b2z
2.

Since R is path connected, we can let h0 : [0, 1] → R be continuous and such
that h0(0) = a0 and h(1) = b0, and h1 : [0, 1] → R continuous such that
h1(0) = a1 and h1(1) = b1, and h2 : [0, 1]→ R continuous such that h2(0) = a2
and h2(1) = b2. Let h : [0, 1]→ A be the function

h(x) = px

where px is the function
px : [0, 1]→ R,

px(z) = h0(x) + h1(x)z + h2(x)z2.

Then Claim: h is well-defined (mapping into A), h is continuous, h(0) = f and
h(1) = g.
Proof. Let x ∈ [0, 1]. Then for any z ∈ [0, 1], the formula given for px(z)
defines a specific value, so the function px is well-defined. And px is in A since
the formula for px(z) in terms of z is the standard form for a quadratic (if
h2(x) 6= 0) or linear function (if h2(x) = 0).

h(0) = f since

h(0)(z) = p0(z) = h0(0) + h1(0)z + h2(0)z2

(by definition of p0)
= a0 + a1z + a2z

2

(by choice of h0, h1, h2)
= f(z).
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Likewise h(1) = g.
Continuity: let x ∈ [0, 1] and ε > 0. Since h0, h1, h2 are each continuous

there are δ0, δ1, δ2 > 0 such that for all x′ ∈ [0, 1],

|x− x′| < δi =⇒ |hi(x)− hi(x′)| < ε/3

for each i = 0, 1, 2. Let δ = min(δ0, δ1, δ2). We claim that for all x′ ∈ [0, 1],

|x− x′| < δ =⇒ dmax(h(x), h(x′)) < ε.

For let x′ ∈ [0, 1] with |x− x′| < δ. We have

dmax(h(x), h(x′)) = max{|h(x)(z)− h(x′)(z)|
∣∣ z ∈ [0, 1]}.

So let z ∈ [0, 1]. Then
|h(x)(z)− h(x′)(z)|

= |h0(x) + h1(x)z + h2(x)z2 − h0(x′)− h1(x′)z − h2(x′)z2|

= |(h0(x)− h0(x′)) + (h1(x)− h1(x′))z + (h2(x)− h2(x′))z2|

By the (version of the) triangle inequality |a+ b+ c| ≤ |a|+ |b|+ |c|:

≤ |h0(x)− h0(x′)|+ |z||h1(x)− h1(x′)|+ |z2||h2(x)− h2(x′)|

And since |x− x′| < δ, we have |hi(x) = hi(x
′)| < ε/3 for each i = 0, 1, 2, so

< (ε/3)(1 + |z|+ |z2|)

And since z ∈ [0, 1], |z| ≤ 1 and |z2| ≤ 1:

≤ (ε/3)(3) = ε,

so
|h(x)(z)− h(x′)(z)| < ε,

and since h(x) and quadratic/linear functions they’re continuous, so the absolute
difference function |h(x)−h(x′)| is also continuous, so attains its maximum value
over the closed interval [0, 1], so

dmax(h(x), h(x′)) < ε,

as required. Therefore h is continuous.
(b) Any set of the form {f, g} with f 6= g ∈ C([0, 1]) is disconnected, since

if ε = dmax(f, g), then ε > 0, so U1 = B(f, ε/2) and U2 = B(g, ε/2) separate
{f, g} (since f ∈ U1 and g ∈ U2, so both U1 ∩ {f, g} 6= ∅ and U2 ∩ {f, g} 6= ∅,
and {f, g} ⊆ U1 ∪ U2, and U1 ∩ U2 ∩ {f, g} = ∅ since in fact U1 ∩ U2 = ∅
since if h ∈ U1 ∩ U2 then d(f, h) < ε/2 and d(g, h) < ε/2 which by the triangle
inequality implies d(f, g) ≤ d(f, h) + d(h, g) < (ε/2) + (ε/2) = ε, contradicting
that d(f, g) = ε). So e.g. let f be the constantly 0 function and g the constantly
1 function, with domain [0, 1]. Then f, g ∈ C([0, 1]) and f 6= g and so {f, g} is
disconnected.

(c) The max-metric topology is the topology of the max metric. The topol-
ogy of a metric space is always T4. So this topology is T4.
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4. Let (X, τ) be a T2 topological space such that X is compact. Show that
the space is T3.
Solution.
Let z ∈ X and C ⊆ X such that C is closed and z /∈ C. Since C is closed,
C ⊆ X and X is compact, we have (by a theorem from class) that C is compact.
For each c ∈ C, let Uc, Vc ∈ τ be such that z ∈ Uc, c ∈ Vc, and Uc ∩ Vc = ∅
(they exist b/c (X, τ) is T2). Then C ⊆

⋃
c∈C Vc and each Vc ∈ τ , so 〈Vc〉c∈C

forms an open cover of Vc. Since C is compact, there is a finite subcover from
the open cover: we have c1, . . . , cn ∈ C such that {Vc1 , . . . , Vcn} is a (finite)
subcover of C. Now let U = ∩ni=1Uci , and let V =

⋃n
i=1 Vci . Then: C ⊆ V ,

by choice of the finite subcover. And z ∈ U , since z ∈ Uc for each c ∈ C; in
particular z ∈ Uci for each i = 1, . . . , n. And U ∩V = ∅, since if for some x ∈ X
we have x ∈ U ∩ V , then x ∈ Vck for some k ∈ {1, . . . , n}, and x ∈ Ucl for
every l = 1, . . . , n But then in particular, x ∈ Uck . But then x ∈ Uck ∩ Vck ,
contradicting that Uc ∩ Vc = ∅ for every c ∈ C.

So U and V are as required for T3-ness with respect to z, C. This shows
(X, τ) is T3.

5. Let C be the Cantor set.
Is there
(a) an onto function f : N→ C?
(b) an onto function f : R→ C?
(c) an onto function f : C → R?
(d) a continuous onto function f : N→ C? (where it’s the discrete topology on
N and restriction of standard on C)
(e) a continuous onto function f : R→ C? (standard topology on R)
(f) a continuous onto function f : C → R?
Solution.
(a) No, C is uncountable.
(b) Yes. Since C ⊆ R and C 6= ∅, we can just let f : R → C be defined by
f(x) = x for x ∈ C and f(x) = 0 for x /∈ C (note 0 ∈ C). Then f is onto.
(c) Yes. There was a homework problem which constructed an onto function
f : C → [0, 1]. (E.g. for x ∈ C, let x = 0.t1t2t3 . . . be the base 3 representation
of x which uses only 0’s and 2’s, i.e. each ti ∈ {0, 2}; this representation exists
by one of the definitions of C. Then let f(x) = 0.( t12 )( t22 )( t32 ) . . ., in base 2. One
can show that f : C → [0, 1] is onto.)

Now there’s an onto function g : [0, 1] → R: let g(0) = 0, g(1) = 0, and let
g(x) = tan(−π/2 + πx) for x ∈ (0, 1). This is onto.

Then g ◦ f : C → R is onto.
(d) No, by (a).
(e) No. R is connected but C is not connected (e.g. (−∞, 12 ) and ( 1

2 ,∞) form
a separation of C). But the continuous image of a connected set is connected.
So there cannot be a continuous function R→ C whose range is C.
(f) No, since (C, τstd,1 �C) is a compact space (since C is closed and bounded
⊆ R, C is a compact subset of R; this implies that (C, τstd,1 �C) is a compact
space, i.e. C is a compact subset of this space, as proved in the Lemma in
Problem 1), but R is non-compact, and the continuous image of a compact set
is compact, there is no continuous function from C to R.

6. Let (X, d) be a metric space. Recall that a subset D ⊆ X is dense iff for
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every non-empty open set U , U ∩D 6= ∅. Show that X has a countable dense
subset iff X has a countable base.

Solution. Suppose there is a countable dense subsetD ⊆ X. Let b = {B(d, q)|d ∈
D, q ∈ Q}. Then since D,Q are both countable, so is D ×Q, and the function
f : D ×Q→ b given by f(d, q) = B(d, q) is onto, so b is countable. And b ⊆ τd
since it consits of open balls.

Claim. b forms a base for τd.
Proof: Let W ⊆ X be such that W ∈ τd. Let z ∈ W . Then there is ε > 0 such
that B(z, ε) ⊆ W . Then B(z, ε/2) is a non-empty set (z is in it) and is in τd.
Therefore D ∩ B(z, ε/2) 6= ∅, since D is dense. Let d ∈ D ∩ B(z, ε/2).

Then Subclaim: z ∈ B(d, ε/2) ⊆ B(z, ε). For d ∈ B(z, ε/2) so d(d, z) < ε/2
so z ∈ B(d, ε/2), giving the first part of the Subclaim. And if w ∈ B(d, ε/2)
then d(d,w) < ε/2, and d(d, z) < ε/2 since d ∈ B(z, ε/2). Therefore d(w, z) ≤
d(w, d) + d(d, z) < (ε/2) + (ε/2) = ε, using the triangle inequality. Therefore
w ∈ B(z, ε), finishing the proof of the Subclaim.

Now d(d, z) < ε/2. Let q ∈ Q ∩ (d(d, z), ε/2]. Then B(d, q) ∈ b, and by
the Subclaim, since q ≤ ε/2, B(d, q) ⊆ B(d, ε/2) ⊆ B(z, ε), and by choice of
ε, B(z, ε) ⊆ W , so we have B(d, q) ⊆ W . And since q > d(d, z), we have
z ∈ B(d, q). Since z ∈W was arbitrary, it follows that W is a union of elements
of b. So b is a base for τd as required.

Since b is countable, the Claim completes the proof that there is a countable
base.

Now for the converse. Suppose there is a countable base b. For each U ∈ b
such that U 6= ∅, let dU ∈ U . Let D = {dU | U ∈ b, U 6= ∅}.

Claim: D is countable and dense.
Proof. Since b is countable, and the function f : b → D, given by f(U) = dU ,
is onto, we have that D is countable. D is dense, since if U ∈ τd is non-empty,
then let x ∈ U . Then there is W ∈ b such that x ∈ W ⊆ U , since b is a base.
Then dW ∈W ⊆ U , so dW ∈ U , and dW ∈ D, so D ∩ U 6= ∅, as required.

7. Let X1, X2 be top spaces and A1 ⊆ X1, A2 ⊆ X2. Show that Cl(A1 ×
A2) = Cl(A1)× Cl(A2).
Solution. This was in midterm 2; see solution on website.

8. Let A ⊆ R be an open set. Show that there is some J ⊆ N and a family
〈Ii〉i∈J of pairwise disjoint open intervals (i.e. i 6= j ∈ J =⇒ Ii∩ Ij = ∅) such
that A = ∪i∈NIi (note the family is required to be countable).

Solution. An early homework problem showed that any open subset of R is
the union of a family of pairwise disjoint non-empty open intervals 〈Ui〉i∈K It
follows that the family is countable. For given i ∈ K, choose qi ∈ Q∩Ui. Then
the function K → Q by i 7→ qi is 1-1, since if i 6= j then Ui ∩ Uj = ∅ (they’re
pairwise disjoint), but qi ∈ Ui and qj ∈ Uj , so qi 6= qj (since qi = qj implies
qi ∈ Ui ∩ Uj , but this intersection is empty, contradiction). It follows that K
is countable (a 1-1 function into a countable set has countable domain; by a
homework problem). So either K is finite or countably infinite. If K is finite,
let J ⊆ N have the same number of elements as does K, and if K is infinite,
let J = N. Let f : J → K be a bijection. Then for i ∈ J let Ii be Uf(i).
Then if i 6= j with i, j ∈ J then Uf(i) ∩ Uf(j) = ∅, since the family 〈Ui〉k∈K
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consists of pairwise disjoint intervals. So the family 〈Ii〉i∈J is a collection of
pairwise disjoint open intervals (and the index set is J ⊆ N, as required), and
A = ∪i∈JIi, as required.

9. (a) Using the original definition of “closure” (i.e. the closure of a set A is
the intersection of all closed sets B such that A ⊆ B), prove the characterization
of closure given in class, i.e. prove that a point x is in the closure of A iff for
every open set W such that x ∈W , we have that W ∩A 6= ∅.
Solution.
If x /∈ Cl(A) then since Cl(A) is closed, W = X − Cl(A) is open, and we have
x ∈ W . Therefore there is an open set W such that x ∈ W , but W ∩A = ∅. If
there is an open set W such that x ∈W , but W ∩A = ∅, then X −W is closed,
and A ⊆ X −W , and therefore Cl(A) ⊆ X −W (since Cl(A) is the smallest
closed set C such that A ⊆ C). The characterization follows.

(b) The boundary of a set A is B = Cl(A) − Int(A). Is it possible for the
boundary to have non-empty interior, i.e. for Int(B) 6= ∅?
Solution.
Yes, e.g. A = Q ⊆ R. Then Cl(A) = R (since by the characterization, x ∈ Cl(A)
iff for every open W ⊆ R such that x ∈W , we have W ∩Q 6= ∅, and this is true
for any open W 6= ∅, since Q is dense in R). But Int(A) = ∅, since if U ⊆ A = Q
is open, and if U 6= ∅, then U contains some irrational, by the density of R−Q,
contradicting that U ⊆ Q.

10. Show that if A is connected subset of a topological space, and A ⊆ B ⊆
Cl(A), then B is also connected.
Solution.
By contradiction, let U, V be a supposed separation of B; so we have B ⊆ U∪V ,
U ∩V ∩B = ∅, U ∩B 6= ∅, and V ∩B 6= ∅, and U, V ∈ τ , where τ is the topology
we’re dealing with. Since A ⊆ B, it follows that A ⊆ U ∪V and U ∩V ∩A = ∅,
and we have U, V ∈ τ . Since A is connected, we must have either U ∩A = ∅ or
V ∩ A = ∅. Suppose V ∩ A = ∅. Now let z ∈ V ∩ B. Then since B ⊆ Cl(A)
we have z ∈ Cl(A), and therefore since z ∈ V ∈ τ , we have V ∩ A 6= ∅. This
contradicts that we deduced V ∩ A = ∅. The case that U ∩ A = ∅ is just the
same, by symmetry. This shows there’s no separation of B, so B is connected.

11.(a) Prove that in Rn, every open ball is connected.
Solution.
We can in fact show that every open ball is path-connected (which implies it’s
connected).

For given x ∈ B(p, ε) ⊆ Rn, let fx1 : [0, 12 ] → Rn be the linear function
satisfying fx1 (0) = x and fx1 (1) = p. (I.e., fx1 (a) = 2( 1

2 − a)x + 2ap.) Then fx1
is continuous (like proof of continuity of function in problem 1); (in fact every
polynomial function Rm → Rn is continuous).

Claim: fx1 “[0, 12 ] ⊆ B(p, ε).
Proof. For convenient notation, for y, z ∈ Rn, note that

d(y, z) =
√

(y − z) · (y − z)
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where the · is the usual dot product, i.e. yż =
∑n
i=1 yizi, since

d(y, z) =

√√√√ n∑
i−1

(yi − zi)2.

Also recall that for scalars a, b ∈ R and y, z ∈ Rn, (ay) · (bz) = (ab)(y · z); this
follows directly from the definition of ·.

So let a ∈ [0, 12 ] = dom(fx1 ). Then

d(p, fx1 (a)) =
√

(p− fx1 (a)) · (p− fx1 (a))

=

√
(p− 2(

1

2
− a)x− 2ap) · (p− 2(

1

2
− a)x− 2ap)

=
√

((1− 2a)(p− x)) · ((1− 2a)(p− x))

=
√

(1− 2a)2(p− x) · (p− x)

= |1− 2a|
√

(p− x) · (p− x)

= |1− 2a|d(p, x)

Since a ∈ [0, 12 ]:
≤ d(p, x) < ε.

So fx1 (a) ∈ B(p, ε), as required.
This proves the Claim.

For x ∈ B(p, ε), define fx2 : [ 12 , 1] → Rn to be the linear function such that
fx2 ( 1

2 ) = p and fx2 (1) = x. (I.e. fx2 (a) = 2(1− a)p+ 2(a− 1
2 )x.) Then similarly

to fx1 , we also have fx2 is continuous, and fx2 “[ 12 , 1] ⊆ B(p, ε).
Now given x, y ∈ B(p, ε), let f : [0, 1]→ Rn be defined by f � [0, 12 ] = fx1 and

f � [ 12 , 1] = fy2 . (Note that this is well defined as fx1 ( 1
2 ) = p = fy2 ( 1

2 ).) Then
f is continuous: for a ∈ [0, 1], if a ∈ ( 1

2 , 1] and ε > 0 then there’s δ > 0 as
required for continuity of f , since just let δ = min((a− 1

2 ), δ′), where δ′ is such
that for all b, |b − a| < δ′ implies d(fy2 (b), fy2 (a)) < ε (exists by continuity of
fy2 ). Then if |b − a| < δ, then b ∈ ( 1

2 , 1], so f(b) = fy2 (b), and |b − a| < δ′, so
d(fy2 (b), fy2 (a)) < ε, and fy2 (b) = f(b) and fy2 (a) = f(a), so d(f(b), f(a)) < ε, as
required. Similarly if a ∈ [0, 12 ). If a = 1

2 and ε > 0 then choose δ = min(δ′, δ′′),
where δ′ are as required for continuity of fx1 w.r.t. 1

2 , ε, and δ′′ as required for
fy2 w.r.t. 1

2 , ε. Then δ is as required for f w.r.t. 1
2 , ε. (Note again here that

f( 1
2 ) = p = fx1 ( 1

2 ) = fy2 ( 1
2 ).)

And we have fx1 (0) = x and fy2 (1) = y, so f(0) = x and f(1) = y. And
f“[0, 1] = fx1 “[0, 12 ] ∪ fy2 “[ 12 , 1] ⊆ B(p, ε). So f is as required for x, y.

Therefore B(p, ε) is path-connected, as required.

(b) Now if you did (a) by showing that every open ball is in fact path-
connected, then do it again, without using path-connectedness. (Hint: show
first that [a, b]× [c, d] is connected for any reals a < b and c < d. Combine this
with Munkres’ §23 exercise 2.)
Solution.
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There are actually a couple of ways to do this; one follows the hint, and one
directly uses the theorem on the union of a family of connected sets, where the
family’s intersection is non-empty.

Method 1 (not following hint):

Claim 1. Let p ∈ Rn and ε > 0. Let z ∈ B(p, ε). Then there is a set of the
form W = [a1, b1]× . . .× [an, bn] such that p, z ∈W and W ⊆ B(p, ε).

Proof. For each i ≤ n, let

ai = min(pi, zi),

bi = max(pi, zi).

Note then that for each i,
ai ≤ pi, zi ≤ bi,

and therefore
p, z ∈W = [a1, b1]× . . .× [an, bn].

So we just need to see that W ⊆ B(p, ε).
Note that z, p are at opposite corners of the prism W . (That is, if ai 6= bi

then either [pi = ai and zi = bi] or [pi = bi and zi = ai], and if ai = bi then
pi = zi = ai = bi.) We have d(p, z) < ε. Let y ∈W ; we’ll show d(p, y) ≤ d(p, z),
so d(p, y) < ε too, so y ∈ B(p, ε), as required.

Well,

d(p, y) =

√√√√ n∑
i=1

(pi − yi)2

and for each i, yi ∈ [ai, bi]. So |yi−ai| ≤ |bi−ai| and |yi−bi| ≤ |bi−ai|. We have
that either [pi = ai and zi = bi] or [pi = bi and zi = ai] (even if pi = zi = ai = bi)
so in any case, we get |yi − pi| ≤ |bi − ai|, so |yi − pi| ≤ |zi − pi|. Therefore
(yi − pi)2 ≤ (zi − pi)2. Therefore

n∑
i=1

(pi − yi)2 ≤
n∑
i=1

(zi − pi)2.

Therefore

d(p, y) =

√√√√ n∑
i=1

(pi − yi)2 ≤

√√√√ n∑
i=1

(zi − pi)2 = d(p, z).

So
d(p, y) ≤ d(p, z) < ε

so d(p, y) < ε, as required.
This proves Claim 1.

Claim 2. W is connected ⊆ Rn.
Proof. First [a1, b1] × [a2, b2] is connected in (R2, τstd,2), since [ai, bi] is

connected ⊆ R, and the product of connected sets is a connected subset of the
product topology, and (R2, τstd,2) = (R×R, ρ), where ρ is the product topology
of (R, τstd,1) with itself.
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Now (R3, τstd,3) is the 3-fold product of (R, τstd,1) with itself. (I.e. the
product of (R × R, ρ2) with (R, τstd,1), where ρ2 is the product of (R, τstd,1) ×
(R, τstd,1). Since [a1, b1]× [a2, b2] is connected ⊆ R2 and [a3, b3] connected ⊆ R,
we therefore get that [a1, b1]× [a2, b2]× [a3, b3] is connected ⊆ R3.

And so on, by induction: Rn is the n-fold product of (R, τstd,1) with itself,
n times:

(Rn, τstd,1) = (R× . . .× R, ρn).

By induction, one proves that [a1, b1] × . . . × [an, bn] is a connected subset of
(Rn, τstd,1).

This proves Claim 2.
Now for z ∈ B(p, ε) let Wz be the set [a1, b1]× . . .× [an, bn] described above.

Then the family 〈Wz〉z∈B(p,ε) is such that:⋃
z∈B(p,ε)

Wz = B(p, ε),

since by Claim 1, for each z ∈ B(p, ε), we have z ∈Wz, and Wz ⊆ B(p, ε)); each
Wz is connected, by Claim 2;

∩z∈B(p,ε)Wz 6= ∅

since p ∈Wz for each z, by Claim 1.
Therefore by the theorem from lectures on unions of families of connected

sets, where the intersection of the family is non-empty, we have that
⋃
z∈B(p,ε)Wz

is connected, so B(p, ε) is connected.

Method 1 (following hint, sketch):
Now we want to use Munkres’ §23 exercise 2. So we would like to come up

with a countable family 〈Un〉n∈N of connected sets Un, such that for each n,
Un ∩

⋃n
i=1 Ui is non-empty, and B(p, ε) =

⋃
i∈N Ui. Then the Munkres exercise

implies that B(p, ε) is connected.
For each m ∈ N+, let Xm = {rm,1, . . . , rm,km} enumerate all points of the

form p+ x, such that p+ x ∈ B(p, ε), and x has the form ( i1m , . . . ,
in
m ), for some

integers i1, . . . , in. Note that since B(p, ε) is bounded, m is a fixed denominator,
and i1, . . . , in are required to be integers, there are only finitely many such points
p + x. Note Xm 6= ∅ since p ∈ Xm. Note that for each such x, there is a finite
sequence p + x0, p + x1, p + x2 . . . , p + xj , such that x0 = (0, 0, . . . , 0), x = xj ,
each p+ xi ∈ Xm, and for each i < j, d(p+ xi, p+ xi+1) = 1/m. (Each “step”
from p+ xi to p+ xi+1 is given by changing just one coordinate by 1/m.

E.g. if n = 3 and p = (0, 1, 2) and ε = 0.5 and m = 5 and p + x =
(0.4, 0.8, 2) = p+( 2

5 ,
−1
5 ,

0
5 ) (which is inX5 then; note d(p, p+x) =

√
(0.4)2 + (0.2)2 <

0.5), then we’d get such a path by first stepping 2 times up along the first co-
ordinate, then down once along the second coordinate:

p = p+ (0, 0, 0), p+ (
1

5
, 0, 0), p+ (

2

5
, 0, 0), p+ (

2

5
,
−1

5
, 0) = p+ x.

Now let
X ′m = {r ∈ Xm

∣∣ d(p, r) < ε− (2n/m)}.
Given r ∈ X ′m, there is always a finite sequence of steps p = p+x0, p+x1, . . . , p+
xj = r from p to r, like discussed above, but such that each p+xi is in X ′m. Now
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enumerate X ′m in an order q0, . . . , qjm , without repetitions, such that q0 = p,
and for each i < jm, there is j ≤ i such that d(qj , qi+1) = 1/m (so qi+1 is just a
single “step” from some already enumerated qj). (This is always possible - after
enumerating q0, . . . , qi, if there are still some elements of X ′m left to enumerate,
choose qi+1 to be a point p + x a minimal number of “steps” away from p -
i.e. minimal distance in the taxicab metric - which is yet to be enumerated.
Then if the sequence p = p + x0, p + x1, . . . , p + xj = p + x has this minimal
number of steps, then the second last element, p + xj−1, is in X ′m, and there
is a shorter sequence of steps to reach p + xj−1 than the shortest sequence to
reach p+ x (since throwing away p+ x from the given sequence already reaches
p+xj−1). Therefore p+xj−1 must already have been enumerated, by choice of
p+ x. I.e p+ xj−1 = qj′ for some j′ ≤ i. So qj′ is a single step away from qi+1,
as required.)

Now let Vm,i be the closed box, centered at qi, with sides of length 2/m. Note
that if z ∈ Vm,i then d(z, qi) ≤ n/m; this this can be shown from the triangle
inequality, since we’re working in Rn. Then again using the triangle inequality,
since qi ∈ X ′m, d(qi, p) ≤ ε− (n/m), one can show that Vm,i ⊆ B(p, ε).

Now enumerate {Vm,i|m ∈ N+, 0 ≤ i ≤ jm} as U1, U2, U3, . . ., in the order

V1,1, V1,2, V1,3, . . . , V1,j1 , V2,1, V2,2, . . . , V2,j2 , V3,1, . . .

Then Claim: the family 〈Un〉n∈N has the right properties.
Proof of this is omitted.

12. Let (X1, τ1), (X2, τ2) be two topological spaces such that X1 ∩X2 = ∅.
Fix x1 ∈ X1 and x2 ∈ X2. We’ll describe a way to “join” these two spaces,
to form a single space, in which x1 and x2 represent the same point. We are
joining the spaces “at” the points x1 and x2. Let a be some object such that
a /∈ X1 ∪X2.

Define a topological space (X ′1, τ
′
1) to be essentially the same as (X1, τ1),

except that we replace the point x1 with a. That is, first define X ′1 as:

X ′1 = (X1 − {x1}) ∪ {a}.

Let f : X ′1 → X1 be the map given by f(x) = x for x ∈ X ′1−{a}, and f(a) = x1.
Now define τ ′1 by:

τ ′1 = {f−1(W ) | W ∈ τ1}.

This defines (X ′1, τ
′
1). Similarly, let (X ′2, τ

′
2) be the space given by replacing

x2 ∈ X2 with a.
It’s straightforward to check that (X ′1, τ

′
1) and (X ′2, τ

′
2) are topological spaces,

and X ′1 ∩X ′2 = {a}.
Now define a new topological space (X, τ) by “joining” the two spaces at

their common point a. That is, let

X = X ′1 ∪X ′2,

and given W ⊆ X, let W ∈ τ iff both (W ∩X ′1) ∈ τ ′1 and (W ∩X ′2) ∈ τ ′2.
So (X, τ) is the result of “joining” (X1, τ1) to (X2, τ2), “at” the points x1 and

x2. (Remark: in terms of the topologies, it doesn’t matter what the underlying
points actually are, it just matters what the topological structure is. Although
we’ve changed the identities of x1 and x2 to a, we’ve preserved the topological
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structures of the original X1 and X2, on each of their “sides” of the space X.
Now for the problems:

(a) Show that (X, τ) is a topological space.
(b) Describe the interior and closure operations of X in terms of those for

X1 and X2.
(c) Show that X is compact (or connected, or path-connected) (w.r.t. τ) iff

both X1 and X2 are compact (or connected, or path-connected) (w.r.t. τ1 and
τ2)

(d) Suppose X1 = R and X2 = R2, x1 = 0 and x2 = (0, 0). Give a subset of
A ⊆ R3, and a bijection f : X → A, and f is continuous, and f−1 is continu-
ous. (This is a homeomorphism, a bijection which exactly preserves topological
structure; i.e. U is open iff f“U is open.)

Solution.
(a) We have ∅ ∈ τ since ∅ ∩ X ′1 = ∅ ∈ τ ′1 and likewise for “2” in place of “1”.
We have X ∈ τ since X ∩X ′1 = X ′1 ∈ τ ′1 and likewise for “2”.

Let V,W ∈ τ . Then (V ∩ W ) ∩ X ′1 = (V ∩ X ′1) ∩ (W ∩ X ′1) ∈ τ ′1 since
V ∩ X ′1 ∈ τ ′1 and W ∩ X ′1 ∈ τ ′1 and τ ′1 is a topology. Likewise for “2”. So
V ∩W ∈ τ .

Let 〈Vα〉α∈I be a family of sets Vα ∈ τ . Let U be the union of the family.
Then U ∩X ′1 =

⋃
α∈I(Vα ∩X ′1), and each Vα ∩X ′1 ∈ τ ′1, so the latter union is

in τ ′1. Likewise for “2”. Therefore U ∈ τ , as required.
This shows (X, τ) is a topological space.
(b) First note that if A ⊆ X, then Int(A) ⊆ Int1(A ∩ X ′1) ∪ Int2(A ∩ X ′2),

where Int1 is the interior operation on X ′1, and likewise for “2”. For W =
Int(A) is open w.r.t. τ , so W ∩ X ′1 ∈ τ ′1, and W ⊆ A, so W ∩ X ′1 ⊆ A ∩ X ′1.
Therefore W ∩ X ′1 ⊆ Int1(A ∩ X ′1). Likewise W ∩ X ′2 ⊆ Int2(A ∩ X ′2). But
W = W ∩X ′1 ∪W ∩X ′2.

Now note that a ∈ Int(A) iff a ∈ Int1(A∩X ′1) and a ∈ Int2(A∩X ′2). Proof:
if a ∈ Int(A) then there’s W ∈ τ , such that a ∈W ⊆ A. But then W ∩X ′1 ∈ τ ′1,
and a ∈W∩X ′1, so a ∈ Int1(A). Likewise for “2”. Now suppose a ∈ Int1(A∩X ′1)
and a ∈ Int2(A ∩ X ′2). Let W1 ∈ τ1 such that a ∈ W1 ⊆ X ′1 and likewise for
W2. Then W = W1 ∪W2 is in τ (since W ∩X ′1 = W1 and likewise for “2”) and
a ∈W . So a ∈ Int(A).

Now suppose x ∈ X ′1, and x ∈ Int1(A∩X ′1). We want to determine whether
x ∈ Int(A).

Case 1. a ∈ Int(A) (note we’ve already described this condition in terms of
Int1 and Int2).
Then x ∈ Int(A). For let U ∈ τ , such that a ∈ U ⊆ A, and let U ′ ∈ τ ′1, such
that x ∈ U ′ ⊆ A ∩X ′1. Then U ′ ∪ U ∈ τ , since

(U ′ ∪ U) ∩X ′2 = (U ′ ∩X ′2) ∪ (U ∩X ′2)

but U ′ ∩X ′2 ⊆ {a} and {a} ⊆ U ∩X ′2, so in fact

(U ′ ∪ U) ∩X ′2 = U ∩X ′2

and U ∩X ′2 ∈ τ ′2 since U ∈ τ . And

(U ′ ∪ U) ∩X ′1 = (U ′ ∩X ′1) ∪ (U ∩X ′1)

= U ′ ∪ (U ∩X ′1)

14



and U ′ ∈ τ ′1, and U ∩X ′1 ∈ τ ′1 since U ∈ τ , so U ′ ∪ (U ∩X ′1) ∈ τ ′1.

Case 2. a /∈ Int(A).

Subcase 1. There’s V ∈ τ ′1 such that x ∈ V and a /∈ V .
Then x ∈ Int(A). For V ∈ τ and V ⊆ A and x ∈ V .

Subcase 2. For every V ∈ τ ′1, if x ∈ V then a ∈ V (including the case that
x = a).
Then x /∈ Int(A). For if x ∈ Int(A) then there’s W ∈ τ such that x ∈ W ⊆ A.
But then W ∩ X ′1 ∈ τ ′1 and x ∈ W ∩ X ′1, but then a ∈ W ∩ X ′1 by subcase
hypothesis, so a ∈ W , but W ∈ τ and W ⊆ A, and therefore a ∈ Int(A), con-
tradicting case hypothesis.

Things work symmetrically when “1” is replaced by “2”.

This gives a description of Int in terms of the interior operations for X ′1 and
X ′2, but these translate directly to the interior operations for X1 and X2, just
replacing “a” with “x1” for X1, and likewise for “2”.

This completes the description.
Remark: Note this implies that if X1, X2 are both T1 (and therefore X ′1, X

′
2

are both T1), then for x ∈ X ′1, x ∈ Int(A) iff x 6= a and x ∈ Int1(A ∩ X ′1), or
x = a and a ∈ Int1(A ∩X ′1) and a ∈ Int2(A ∩X ′2).

The closure operation works similarly. (It can be inferred from the interior
operation, in fact, since closed sets are just complements of open sets.) Further
detail is omitted.

(c) First X1 is compact w.r.t. τ1 iff X ′1 is compact w.r.t. τ ′1, since these
spaces are identical except for the replacement of x1 with a, essentially just
a renaming of that point; the open sets are preserved through this renaming.
Likewise for “2”.

Suppose X1 and X2 are both compact. So X ′1 and X ′2 both are.
Let 〈Ui〉i∈I be an open cover of X. Then Vi = Ui ∩ X ′1 ∈ τ ′1 for each i, so

〈Vi〉i∈I forms an open cover of X ′1, since also X ′1 ⊆ X, so X ′1 = X ∩ X ′1, and
X =

⋃
i∈I Ui. By compactness of X1 w.r.t. τ ′1, there is a finite subcover, so we

have Vi1 , . . . , Vin such that

X ′1 ⊆ Vi1 ∪ . . . ∪ Vin .

Similarly, if we set Wi = Ui ∩ X ′2, then there are finitely many Wj1 , . . . ,Wjm

such that
X ′2 ⊆Wj1 ∪ . . . ∪Wjm

(using compactness of X ′2). But then

X = X ′1 ∪X ′2 ⊆ Vi1 ∪ . . . ∪ Vin ∪Wj1 ∪ . . . ∪Wjm .

But Vi ⊆ Ui and Wi ⊆ Ui for each i, so

X ⊆ Ui1 ∪ . . . ∪ Uin ∪ Uj1 ∪ . . . ∪ Ujm .

Therefore the list of sets Ui1 , . . . , Uin , Uj1 , . . . , Ujm form a cover of X, there are
only finitely many of them (there are n + m of them), and each is one of the
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sets from the original family 〈Ui〉i∈I . So this is is a finite subcover of X from
this family, as required. So X is compact.

Now suppose X1 is not compact; so X ′1 is not compact either. We will show
X is not compact. (By symmetry then, if X2 is not compact, then X is not
compact either.)

Let 〈Ui〉i∈I be an open cover of X ′1 which admits no finite subcover of X ′1; i.e.
for any finite list Ui1 , . . . , Uin of sets from this family, we have X 6⊆ Ui1∪. . .∪Uin .

For i ∈ I, define Vi ∈ τ as follows: if a /∈ Ui then let Vi = Ui. If a ∈ Ui then
let Vi = Ui ∪X ′2. Note that in either case, Vi ∈ τ (we have Vi ∩X ′2 is either ∅ or
X ′2, which is in τ ′2, and Vi ∩X ′1 = Ui, which is in τ ′1). So 〈Vi〉i∈I is a family of
sets each in τ . This family is also a cover of X, since there is i0 ∈ I such that
a ∈ Ui0 (exists since 〈Ui〉i∈I is a cover of X ′1 and a ∈ X ′1), and therefore we have
X ′2 ⊆ Vi0 , so Ui0 ⊆

⋃
i∈I Vi, and Ui ⊆ Vi for each i, so X ′1 =

⋃
i∈I Ui ⊆

⋃
i∈I Vi.

So the union of the Vi’s covers both X ′1 and X ′2, so covers X.
We claim there is a no finite subcover of X from the family of 〈Vi〉i∈I . For

let Vi1 , . . . , Vin be a finite list of sets from that family. We must show these sets
do not form a cover of X.

We know Ui1 , . . . , Uin does not cover X ′1, by choice of the family 〈Ui〉i∈I .
Let x ∈ X ′1 such that x /∈ Ui1 ∪ . . . ∪ Uin . By definition of Vi, Vik ∩X ′1 = Uik
for k = 1, . . . , n. But x ∈ X ′1, and therefore x /∈ Vi1 ∪ . . . ∪ Vin , but x ∈ X, so
these sets Vi1 , . . . , Vik do not cover X, as required.

So the family 〈Vi〉i∈I is a cover of X with no finite subcover of X, so X is
not compact.

The connectedness is a similar type of argument (except that it deals with
connectedness instead of compactness). Further detail is omitted.

For path-connectedness, here is an outline. If X ′1 and X ′2 are both path-
connected, and x, y are points in X, if x 6= a and y 6= a, then one can path-
connect x to a in X ′1, and then path-connect a to y in X ′2. Conactenate these
two paths to path-connect x to y. If X is path-connected, prove that X ′1 is
path-connected as follows: given x, y ∈ X ′1, let f : [0, 1] → X be a function
as required for path-connecting x to y. One must show that you can replace
f with a function whose image is contained with X ′1. We have f(0) = x and
f(1) = y. Suppose f“[0, 1] 6⊆ X ′1. Let z0 = inf{z ∈ [0, 1]|f(z) /∈ X ′1}. Similarly,
let z1 = sup{z ∈ [0, 1]|f(z) /∈ X ′1}. Now define g : [0, 1] → X ′1 by: given
z ∈ [0, 1], if z0 < z < z1 then let g(z) = a; if z ≤ z0 or z ≥ z1 then, if f(z) ∈ X ′1
let g(z) = f(z), whereas if f(z) /∈ X ′1 let g(z) = a. (Note that if z < z0 or
z > z1 then certainly f(z) ∈ X ′1 so g(z) = f(z); the last clause is only relevant
when z = z0 or z = z1.)

Prove that g is continuous from [0, 1] to X ′1, in particular g“[0, 1] ⊆ X ′1,
g(0) = x and g(1) = y. The main issue is to see that g is continuous at z0 and
at z1. Consider z0. Suppose first that f(z0) ∈ X ′1, so then g(z0) = f(z0). Note
then that z0 < z1, since if z0 = z1, since f(z0) ∈ X ′1 and then f(z0) = f(z1), it
follows that f“[0, 1] ⊆ X ′1 from choice of z0, z1, contradiction. Now let U ∈ τ ′1
such that f(z0) ∈ U . We claim that a ∈ U . For otherwise U ∈ τ , and therefore
f−1(U) is open in [0, 1], and z0 ∈ U , but therefore (z0 − ε, z0 + ε) ⊆ f−1(U) for
some ε > 0, which implies f“(z0− ε, z0 + ε) ⊆ U ⊆ X ′1, contradicting the choice
of z0. So a ∈ U . So let δ be such that 0 < δ < z1 − z0 and for all z ∈ [0, 1],
|z − z0| < δ implies f(z) ∈ U . Then if z ∈ [0, 1] and |z − z0| < δ then g(z) ∈ U ,
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as required for continuity at z0.
Now suppose that f(z0) /∈ X ′1. So g(z0) = a. Let U ∈ τ ′1 such that a ∈ U .

Then W = U ∪X ′2 ∈ τ and f(z0) ∈ W . Therefore there is δ > 0 such that for
z ∈ [0, 1], |z− z0| < δ implies f(z) ∈W . But then if |z− z0| < δ then: if z < z0
then g(z) = f(z) ∈ W and f(z) ∈ X ′1, so in fact g(z) ∈ U ; likewise if z > z1;
if z0 ≤ z < z1 then g(z) = a ∈ U ; and if z = z1 then either g(z) = a ∈ U , or
g(z) = f(z) ∈W , and f(z) ∈ X ′1, so again g(z) ∈ U .

(d) Let A ⊆ R3 be the union of the xy-plane with some line through the
origin, which does not lie in the xy-plane. Let p be some non-origin point on the
line. We have X1 = R2 and X2 = R; we have x1 = (0, 0) and x2 = 0; we have
a /∈ R2 ∪ R replacing x1, x2. Let f : X → R3 be: given (x, y) ∈ R2 − {(0, 0)},
let f(x, y) = (x, y, 0); given x ∈ R− {0}, let f(x) = xp; and let f(a) = (0, 0, 0).

We omit the proof that A, f have the required properties.
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