The following will be given on the exam:
Unit circle with standard angles $(0, \pi / 6, \pi / 4, \pi / 3, \pi / 2)$ and their sine/cosine values
$d / d x(\arcsin (x))=\frac{1}{\sqrt{1-x^{2}}}$
$d / d x(\arctan (x))=\frac{1}{x^{2}+1}$
$d / d x(\operatorname{arcsec}(x))=\frac{1}{|x| \sqrt{x^{2}-1}}$
$\int \sec (x) d x=\ln (|\sec (x)+\tan (x)|)+c$
Range of arcsin: $-\pi / 2 \leq \theta \leq \pi / 2$
Range of arccos: $0 \leq \theta \leq \pi$
Range of arctan: $-\pi / 2<\theta<\pi / 2$
Range of arccot: $0<\theta<\pi$
Range of arcsec: $0 \leq \theta<\pi / 2$ union $\pi / 2<\theta \leq \pi$
Range of arccsc: $-\pi / 2 \leq \theta<0$ union $0<\theta \leq \pi / 2$
$\cos ^{2}(\theta)=\frac{1}{2}(1+\cos (2 \theta))$
$\sin ^{2}(\theta)=\frac{1}{2}(1-\cos (2 \theta))$
$\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$
$\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta)$
$\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$
$\tan ^{2}(\theta)+1=\sec ^{2}(\theta)$

