Intro to topology homework 10. Due Thursday April 5, 11am.

1. Let X be a set and \mathfrak{b}^{\prime} be a collection of sets such that $\cup \mathfrak{b}^{\prime}=X$. Let \mathfrak{b} be the collection of all intersections of finite families consisting of elements of \mathfrak{b}^{\prime}, i.e.

$$
\mathfrak{b}=\left\{\bigcap_{i=1}^{n} U_{i} \mid n \in \mathbb{N}, U_{i} \in \mathfrak{b}^{\prime} \text { for } i=1, \ldots, n\right\}
$$

Show that \mathfrak{b} is a base. In fact, show that \mathfrak{b} is a base for a topology τ on X, and τ is the smallest topology τ^{\prime} such that $\mathfrak{b}^{\prime} \subseteq \tau^{\prime}$. (That is, $\mathfrak{b}^{\prime} \subseteq \tau$, and if τ^{\prime} is any topology such that $\mathfrak{b}^{\prime} \subseteq \tau^{\prime}$, then $\tau \subseteq \tau^{\prime}$.)
2. Suppose that (X, τ) is a topological space with a countable base. Show that every sequentially closed subset of X is closed.
3.(a) Let $\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right)$ be top spaces. Let $\pi_{1}: X_{1} \times X_{2} \rightarrow X_{1}$ be the projection map, i.e.

$$
\pi_{1}\left(x_{1}, x_{2}\right)=x_{1}
$$

Let τ be the product topology on $X=X_{1} \times X_{2}$.
(i) Show that π_{1} is continuous as a map from (X, τ) to $\left(X_{1}, \tau_{1}\right)$. (ii) Use symmetry to infer that the same holds for the projection map $\pi_{2}: X \rightarrow X_{2}$ $\left(\pi_{2}\left(x_{1}, x_{2}\right)=x_{2}\right)$. (iii) Show that, in fact, τ is the smallest topology τ^{\prime} on $X_{1} \times X_{2}$ such that both π_{1} is continuous from $\left(X, \tau^{\prime}\right)$ to $\left(X_{1}, \tau_{1}\right)$, and π_{2} is continuous from $\left(X, \tau^{\prime}\right)$ to $\left(X_{2}, \tau_{2}\right)$.
(b) Let (X, τ) be a top space and let $A \subseteq X$. Show that $\pi: A \rightarrow X$, given by $\pi(a)=a$ for each $a \in A$, is continuous from $(A, \tau \upharpoonright A)$ to (X, τ). (Recall that $\tau \upharpoonright A$ is the subspace topoology on A induced by τ.) (In fact, $\tau \upharpoonright A$ is the smallest topology on A with this property; this can be argued like in part (a), but you needn't.)
(c) Let $(Z, \sigma),\left(X_{1}, \tau_{1}\right),\left(X_{2}, \tau_{2}\right)$ be top spaces and let (X, τ) be the product topology on $X=X_{1} \times X_{2}$ from τ_{1}, τ_{2}. Let $f_{1}: Z \rightarrow X_{1}$ and $f_{2}: Z \rightarrow X_{2}$. Let $f: Z \rightarrow X$ then be given by $f(z)=\left(f_{1}(z), f_{2}(z)\right)$.

Show that f is continuous iff both f_{1} and f_{2} are continuous.
(d) Let (X, τ) be a top space and $A \subseteq X$. Let (Z, σ) be another top space. Let $f: Z \rightarrow X$ be such that $\operatorname{rg}(f) \subseteq A$; (here $\operatorname{rg}(f)$ is the range of f) so in fact, $f: Z \rightarrow A$. Make and prove a statement talking about when f is continuous as a map $\left(Z, \tau^{\prime}\right) \rightarrow(X, \tau)$ versus when it is continuous as a map $\left(Z, \tau^{\prime}\right) \rightarrow(A, \tau \upharpoonright A)$. (I.e., are these conditions equivalent, or not, describe.)
(e) Use parts (c),(d) to infer that the example given in class is continuous, i.e. $f: \mathbb{R} \rightarrow \mathbb{R} \times S_{1}$, given by $f(a)=(a,(\cos (2 \pi a), \sin (2 \pi a)))$, is continuous. (You may take for granted that the trig functions $\mathbb{R} \rightarrow \mathbb{R}$ are continuous. Consider \mathbb{R}^{2} as being the product $\mathbb{R} \times \mathbb{R}$. Use (c) to show that the map $\mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$, given by $a \mapsto(\cos (2 \pi a), \sin (2 \pi a))$ is continuous, and proceed from there.)

