Intro to topology homework 10. Due Thursday April 5, 11am.

1. Let X be a set and \mathfrak{b}' be a collection of sets such that $\cup \mathfrak{b}' = X$. Let \mathfrak{b} be the collection of all intersections of finite families consisting of elements of \mathfrak{b}' , i.e.

$$\mathfrak{b} = \{ \bigcap_{i=1}^{n} U_i \mid n \in \mathbb{N}, U_i \in \mathfrak{b}' \text{ for } i = 1, \dots, n \}.$$

Show that \mathfrak{b} is a base. In fact, show that \mathfrak{b} is a base for a topology τ on X, and τ is the smallest topology τ' such that $\mathfrak{b}' \subseteq \tau'$. (That is, $\mathfrak{b}' \subseteq \tau$, and if τ' is any topology such that $\mathfrak{b}' \subseteq \tau'$, then $\tau \subseteq \tau'$.)

2. Suppose that (X, τ) is a topological space with a countable base. Show that every sequentially closed subset of X is closed.

3.(a) Let $(X_1, \tau_1), (X_2, \tau_2)$ be top spaces. Let $\pi_1 : X_1 \times X_2 \to X_1$ be the projection map, i.e.

$$\pi_1(x_1, x_2) = x_1.$$

Let τ be the product topology on $X = X_1 \times X_2$.

(i) Show that π_1 is continuous as a map from (X, τ) to (X_1, τ_1) . (ii) Use symmetry to infer that the same holds for the projection map $\pi_2 : X \to X_2$ $(\pi_2(x_1, x_2) = x_2)$. (iii) Show that, in fact, τ is the smallest topology τ' on $X_1 \times X_2$ such that both π_1 is continuous from (X, τ') to (X_1, τ_1) , and π_2 is continuous from (X, τ') to (X_2, τ_2) .

(b) Let (X, τ) be a top space and let $A \subseteq X$. Show that $\pi : A \to X$, given by $\pi(a) = a$ for each $a \in A$, is continuous from $(A, \tau \upharpoonright A)$ to (X, τ) . (Recall that $\tau \upharpoonright A$ is the subspace topoology on A induced by τ .) (In fact, $\tau \upharpoonright A$ is the smallest topology on A with this property; this can be argued like in part (a), but you needn't.)

(c) Let (Z, σ) , (X_1, τ_1) , (X_2, τ_2) be top spaces and let (X, τ) be the product topology on $X = X_1 \times X_2$ from τ_1, τ_2 . Let $f_1 : Z \to X_1$ and $f_2 : Z \to X_2$. Let $f : Z \to X$ then be given by $f(z) = (f_1(z), f_2(z))$.

Show that f is continuous iff both f_1 and f_2 are continuous.

(d) Let (X, τ) be a top space and $A \subseteq X$. Let (Z, σ) be another top space. Let $f: Z \to X$ be such that $\operatorname{rg}(f) \subseteq A$; (here $\operatorname{rg}(f)$ is the range of f) so in fact, $f: Z \to A$. Make and prove a statement talking about when f is continuous as a map $(Z, \tau') \to (X, \tau)$ versus when it is continuous as a map $(Z, \tau') \to (X, \tau)$ versus when it is continuous as a map $(Z, \tau') \to (A, \tau \upharpoonright A)$. (I.e., are these conditions equivalent, or not, describe.)

(e) Use parts (c),(d) to infer that the example given in class is continuous, i.e. $f : \mathbb{R} \to \mathbb{R} \times S_1$, given by $f(a) = (a, (\cos(2\pi a), \sin(2\pi a)))$, is continuous. (You may take for granted that the trig functions $\mathbb{R} \to \mathbb{R}$ are continuous. Consider \mathbb{R}^2 as being the product $\mathbb{R} \times \mathbb{R}$. Use (c) to show that the map $\mathbb{R} \to \mathbb{R} \times \mathbb{R}$, given by $a \mapsto (\cos(2\pi a), \sin(2\pi a))$ is continuous, and proceed from there.)