Intro to Topology Homework 5 - due Wednesday.
(Note: all solutions, including examples, should be explained, unless stated otherwise.)
(I'll discuss continuity a little more on Tuesday.)

1. Let (X, d) be a metric space and fix $a \in X$. Define $F: X \rightarrow \mathbb{R}$ by $F(x)=10^{3} d(x, a)$. Show that F is continuous.
2. Let $X=C([0,1])$ and let $F: X \rightarrow \mathbb{R}$ be defined by $F(f)=\int_{0}^{1} f(x) d x$. Show that F is continuous as a function from $\left(X, d_{\max }\right)$ to \mathbb{R}. (It is also continuous as a function from $\left(X, d_{\int}\right)$ to \mathbb{R}.)
3. Let (X, d) and (Y, e) be metric spaces and $f: X \rightarrow Y$. We say f is Lipschitz continuous iff there is $K \geq 0$ such that for all $x, y \in X$,

$$
e(f(x), f(y)) \leq K d(x, y)
$$

Prove that if f is Lipschitz continuous then f is continuous.
Give an example of a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is not Lipschitz continuous. (Hint: Think about what Lipschitz continuity means with regard to f^{\prime}, if f is differentiable.)

