Midterm 1 Review Problems

(Note: all solutions, including examples, should be explained, unless indicated otherwise.)

1. (a) Give an example of a set $A \subseteq (0, 1)$, such that: A is closed in $(\mathbb{R}, d_{\text{std}})$ and A is infinite, but for all $a < b \in \mathbb{R}$, $(a, b) \not\subseteq A$.

(b) Give an example of a metric d on \mathbb{R} , such that [0,1) is both closed and open in (\mathbb{R}, d) .

2. Prove that if $A \subseteq \mathbb{R}$ is open then A is the union of a family of open intervals $\langle I_j \rangle_{i \in J}$, such that for all $j \in J$, I_j has rational endpoints.

3. Prove that in any metric space, a set is closed iff it is sequentially closed.

4. Let $X = \mathbb{R}$ and d be the function defined as follows. Given $x, y \in \mathbb{R}$, we define d(x, y).

Case 1: $x, y \in \mathbb{R} \setminus \mathbb{Z}$. Then $d(x, y) = d_{\text{std}}(x, y)$. Case 2: $x \in \mathbb{Z}$ and $y \in \mathbb{R} \setminus \mathbb{Z}$. Then $d(x, y) = 1 + d_{\text{std}}(x, y)$. Case 3: $x \in \mathbb{R} \setminus \mathbb{Z}$ and $y \in \mathbb{Z}$. Then $d(x, y) = 1 + d_{\text{std}}(x, y)$. Case 4: $x, y \in \mathbb{Z}, x \neq y$. Then $d(x, y) = 2 + d_{\text{std}}(x, y)$. Case 5: $x = y \in \mathbb{Z}$. Then d(x, y) = 0. This completes all cases.

(a). Show that (\mathbb{R}, d) is a metric space. (You may assume that (\mathbb{R}, d_{std}) is a metric space.)

(b). Show that for every $x \in \mathbb{R}$, $\{x\}$ is open in (\mathbb{R}, d) iff $x \in \mathbb{Z}$.

(c). Show that if $A \subseteq \mathbb{R}$ is open in $(\mathbb{R}, d_{\text{std}})$ then A is open in (\mathbb{R}, d) .

(d). Let $\langle x_i \rangle_{i \in \mathbb{N}}$ be a sequence of points $x_i \in \mathbb{R}$ such that $i \neq j$ implies $x_i \neq x_j$, and let $x \in \mathbb{R}$. Show that $x_i \to x$ in (\mathbb{R}, d) (as $i \to \infty$) iff both (i) $x_i \to x$ in (\mathbb{R}, d_{std}) , and (ii) $x \notin \mathbb{Z}$.

(e). Let $g : \mathbb{R} \to \mathbb{R}$, $f_0 : (0,1) \to \mathbb{R}$, $f_1 : (1,2) \to \mathbb{R}$ be continuous (in the standard metric on these intervals and \mathbb{R}). Let $a \in \mathbb{R}$. Define

$$f(x) = \begin{cases} g(x) & \text{if } x \le 0\\ f_0(x) & \text{if } 0 < x < 1\\ a & \text{if } x = 1\\ f_1(x) & \text{if } 1 < x < 2\\ g(x) & \text{if } 2 \le x. \end{cases}$$

Show that f is continuous in (\mathbb{R}, d) .

5.

(a) Give an example of a sequence $\langle f_i \rangle_{i \in \mathbb{N}}$ in X = C([0, 1]), which converges in (X, d_{f}) , but not in (X, d_{\max}) .

(b) Show that for any sequence consisting of functions in X = C([0, 1]), if the sequence converges in (X, d_{\max}) then the sequence converges in (X, d_{f}) .

(c) Let A be the set of all $f \in X = C([0, 1])$ such that f is linear. Show that A is not open in (X, d_{\max}) , nor in (X, d_{f}) . Show that A is closed in (X, d_{\max}) .

6. Let (X, d) be a metric space and let $A \subseteq X$ be closed. Suppose that for every $U \subseteq X$, if $U \neq \emptyset$ and U is open then $U \cap A \neq \emptyset$. Prove that A = X.

7. Let U be an open subset of a metric space (X, d). Prove that U is the union of a family of closed balls of (X, d).

8. Suppose (X, d), (Y, e) are metric spaces and $f : X \to Y$, $g : X \to Y$ are continuous w.r.t. the metrics d, e. Suppose d' and e' are also metrics on X, Y respectively.

(a) Suppose $d'(x,y) \ge d(x,y)$ for all $x, y \in X$ and $e'(x,y) \le e(x,y)$ for all $x, y \in Y$. Show that f is also continuous w.r.t. d', e'. (I.e., continuous as a function from the metric space (X, d') to the metric space (Y, e').)

(b) Suppose $A \subseteq X$ and for every $U \subseteq X$ which is open in (X, d), $A \int U \neq \emptyset$ (A is *dense*). Suppose f(x) = g(x) for all $x \in A$. Prove that f = g.

(c) Suppose that $\langle x_i \rangle_{i < \omega}$ is a sequence in X and $x \in X$ and $x_i \to x$ as $i \to \infty$ (with respect to the metric d). Prove that $f(x_i) \to f(x)$ as $i \to \infty$ (with respect to the metric e).