1.

(a) Let A be the interval $(-2,-1) \cup(1,2)$. Prove that A is an open set (in $\left.\left(\mathbb{R}, d_{\text {std }}\right)\right)$.

Solution.
Let $x \in A$. We find an open interval I such that $x \in I \subseteq A$ (to verify the original definition of openness for subsets of \mathbb{R}).
Now either $x \in(-2,-1)$ or $x \in(1,2)$.
If $x \in(-2,-1)$ then let $I=(-2,-1)$. Then I is an open interval, and $x \in I=(-2,-1) \subseteq A$, as required.
If $x \in(1,2)$ then let $I=(1,2)$, and similarly, I is an open interval, and $x \in I=(1,2) \subseteq A$, as required.
Therefore A is open.
Alternatively you can use the open ball definition of openness: given $x \in$ A, if $x \in(-2,-1)$ then let $\varepsilon=\min (x-(-2),-1-x)$; note that since $-2<x<-1$ then $\varepsilon>0$, and that

$$
\begin{aligned}
& \mathcal{B}(x, \varepsilon)=\{z \in \mathbb{R}| | x-z \mid<\varepsilon\} \\
& =\{z \in \mathbb{R} \mid x-\varepsilon<z<x+\varepsilon\}
\end{aligned}
$$

But $-2 \leq x-\varepsilon$ since $\varepsilon \leq 2+x$ (by definition of ε), and similarly $x+\varepsilon \leq-1$, and therefore

$$
\begin{aligned}
= & \{z \in \mathbb{R} \mid-2 \leq x-\varepsilon<z<x+\varepsilon \leq-1\} \\
& \subseteq\{z \in \mathbb{R} \mid-2<z<-1\}=(-2,-1)
\end{aligned}
$$

So $\mathcal{B}(x, \varepsilon) \subseteq(-2,-1)$, as required.
Do a similar thing when for when $x \in(1,2)$. (Or in fact by symmetry: just reflect everything across $x=0 ; d_{\text {std }}$ is symmetric under reflections.)
(b) Let A, B be non-empty sets such that $A \cap B=\emptyset$. Let $X=A \cup B$. For $x, y \in X$ define

$$
d(x, y)=\left\{\begin{array}{cc}
0 & \text { if } x=y \\
1 & \text { if } x, y \in A \& x \neq y \\
1 & \text { if } x, y \in B \& x \neq y \\
3 & \text { if } x \in A, y \in B \\
3 & \text { if } x \in B, y \in A
\end{array}\right.
$$

(b1) Prove the triangle inequality for (X, d). (Hint: given $x, y, z \in X$, you'll need to consider different cases depending on which points are in A and which are in B.)

Solution.
We must prove that for all $x, y, z \in X$,

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

We prove several claims. Note first that for all $a, b \in X, d(a, b)=0$ or $=1$ or $=3$, so in particular $d(a, b) \geq 0$. And note that $d(a, a)=0$ (by the first clause of the definition of d) and if $a \neq b$ then $d(a, b) \geq 1$ since $d(a, b)=1$ or $=3$, since one of the last 4 clauses of the definition of d must apply.
In the following, given a triple (x, y, z) in X^{3}, we say "the triple (x, y, z) satisfies the triangle inequality" to mean

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

This is specific to the ordering of the elements in the triple: e.g. saying " (x, y, z) satisfies the triangle inequality" is different to asserting " (y, x, z) satisifies the triangle inequality", since the latter says

$$
d(y, z) \leq d(y, x)+d(x, z)
$$

instead. We just need to show that for all $(x, y, z) \in X^{3}$, the triple (x, y, z) satisfies the triangle inequality. We'll do this in 4 claims, which each prove that the triangle inequality holds for certain classes of triples (x, y, z).
Claim 1 will deal with triples (x, y, z) s.t. $x=z$; Claim 2 with those s.t. $x \neq z$ and x, z come from the same set, i.e. $[x, z \in A$ or $x, z \in B]$; Claims 3 and 4 with those s.t. $x \neq z$ and x, z come from different sets: Claim 3 with those s.t. $x \neq z$ and $x \in A$ and $z \in B$; Claim 4 with those s.t. $x \neq z$ and $x \in B$ and $z \in B$.
Note that any triple (x, y, z) will then be covered by one of the Claims, so this will prove the triangle inequality fully.

Claim 1. For all $x, y, z \in X$, if $x=z$, then (x, y, z) satisfies the triangle inequality.

Proof. Let $x, y, z \in X$ s.t. $x=z$. From the remarks above, $d(x, y) \geq$ 0 and $d(y, z) \geq 0$, and therefore

$$
0 \leq d(x, y)+d(y, z)
$$

and so since $d(x, z)=0$,

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

as required.

Claim 2. For all $x, y, z \in X$, if $x \neq z$ but $[x, z \in A$ or $x, z \in B]$ then (x, y, z) satisfies the triangle inequality. (This case is iff the second or third clause in the definition of d applies to computing $d(x, z)$, i.e. iff $d(x, z)=1)$.

Proof. Let $x, y, z \in X$ as in the statement of the claim. Since $d(x, z)=1$, we just need to show that

$$
1 \leq d(x, y)+d(y, z)
$$

But $x \neq z$. So either $x \neq y$ or $y \neq z$. (If $x=y$ and $y=z$ then $x=z$, contra.)
If $x \neq y$ then $d(x, y) \geq 1$ (as in the remarks above, since $x \neq y$, one of the last 4 clauses of the definition of d apply, so $d(x, y)=1$ or $d(x, y)=3)$. And since $d(x, z) \geq 0$, we get

$$
1+0 \leq d(x, y)+d(y, z)
$$

and therefore

$$
d(x, z)=1 \leq d(x, y)+d(y, z)
$$

as required.
If $y \neq z$ then similarly $d(y, z) \geq 1$, and $d(x, y) \geq 0$, and therefore

$$
0+1 \leq d(x, y)+d(y, z)
$$

so

$$
d(x, z)=1 \leq d(x, y)+d(y, z)
$$

as required.

Claim 3. For all $x^{\prime}, y^{\prime}, z^{\prime} \in X$ s.t. $x^{\prime} \neq z^{\prime}$ and $x^{\prime} \in A$ and $z^{\prime} \in B$, then $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ satisfies the triangle inequality. (This case is iff the 4 th clause in the definition of d applies to computing $d\left(x^{\prime}, z^{\prime}\right)$, so implies $\left.d\left(x^{\prime}, z^{\prime}\right)=3\right)$.

Proof. Let $x^{\prime}, y^{\prime}, z^{\prime} \in X$ as in the statement of the claim. So $d\left(x^{\prime}, z^{\prime}\right)=3$ by the def'n of d. So we need to show that

$$
3 \leq d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, z^{\prime}\right)
$$

Case 1. $y^{\prime} \in A$.
Then $d\left(x^{\prime}, y^{\prime}\right) \geq 0$ and since $y^{\prime} \in A$ and $z^{\prime} \in B, d\left(y^{\prime}, z^{\prime}\right)=3$. Hence

$$
d\left(x^{\prime}, z^{\prime}\right)=3=0+3 \leq d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, z^{\prime}\right)
$$

Case 2. $y^{\prime} \in B$.
Then since $x^{\prime} \in A$ and $y^{\prime} \in B, d\left(x^{\prime}, y^{\prime}\right)=3$, and anyway $d\left(y^{\prime}, z^{\prime}\right) \geq 0$. Hence

$$
d\left(x^{\prime}, z^{\prime}\right)=3=3+0 \leq d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, z^{\prime}\right) .
$$

This covers all cases, finishing the proof of Claim 3.

Claim 4. For all $x, y, z \in X$ s.t. $x \neq z$ and $x \in B$ and $z \in A$, we have $d(x, z) \leq d(x, y)+d(y, z)$. (This case is iff the 5th clause in the definition of d applies to computing $d(x, z)$, so implies $d(x, z)=3)$.

Proof. Note that d is symmetric: for all $a, b \in X, d(a, b)=d(b, a)$: if $a=b$ then this is trivial; if $a, b \in A$ or $a, b \in B$ then $d(a, b)=$ $1=d(b, a)$; if $[a \in A$ and $b \in B]$ or $[a \in B$ and $b \in A]$ then $d(a, b)=3=d(b, a))$.

We can use this to deduce Claim 4 from Claim 3, because: Let $x, y, z \in X$ as in the statement of Claim 4. Then by the symmetry of d,

$$
d(x, z)=d(z, x)
$$

and since $z \in A$ and $x \in B$, by Claim 3 applied to the triple $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=(z, y, x)$ (so here $x^{\prime}=z, y^{\prime}=y, z^{\prime}=x$), we have

$$
d\left(x^{\prime}, z^{\prime}\right) \leq d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, z^{\prime}\right)
$$

i.e.

$$
d(z, x) \leq d(z, y)+d(y, x)
$$

but then again by symmetry of d,

$$
d(x, z) \leq d(y, z)+d(x, y)=d(x, y)+d(y, z)
$$

by comm of + . This is the triangle inequality for the triple (x, y, z), as required.

The four claims prove the triangle inequality for d, since they cover all possible cases for $x, y, z \in X$.

Remark: I just used the symmetry method to prove Claim 4 for illustration. It would have been faster just to prove it in the same way Claim 3 was proven.
(b2) Assume that (X, d) (as defined above) is a metric space. Show that for every set $D \subseteq X, D$ is open in (X, d).

Solution. Let $D \subseteq X$. We claim that D is open. For let $x \in D$. Let $\varepsilon=1$. Then $\varepsilon>0$ and

$$
\mathcal{B}(x, \varepsilon) \subseteq D
$$

For if $z \in \mathcal{B}(x, \varepsilon)$ then

$$
d(z, x)<1
$$

but by the defintion of d, this implies $d(x, z)=0$, and again by the definition of d (or using that d is a metric) this implies $z=x$. But $x \in D$ by hypothesis, so $z \in D$, as required.
(c) Let $\left(X^{\prime}, d^{\prime}\right)$ be an arbitrary metric space. Suppose $x_{1}, x_{2}, x_{3}, x_{4} \in X$ are such that $d\left(x_{1}, x_{3}\right)=8, d\left(x_{2}, x_{3}\right)=10, d\left(x_{4}, x_{2}\right)=7$. Prove that $d\left(x_{1}, x_{4}\right) \leq 25$.

Solution.

By the triangle inequality,

$$
d\left(x_{1}, x_{4}\right) \leq d\left(x_{1}, x_{3}\right)+d\left(x_{3}, x_{4}\right)
$$

and again by the triangle inequality, $d\left(x_{3}, x_{4}\right) \leq d\left(x_{3}, x_{2}\right)+d\left(x_{2}, x_{4}\right)$, so

$$
d\left(x_{1}, x_{4}\right) \leq d\left(x_{1}, x_{3}\right)+d\left(x_{3}, x_{2}\right)+d\left(x_{2}, x_{4}\right)
$$

By symmetry, $d\left(x_{3}, x_{2}\right)=d\left(x_{2}, x_{3}\right)$ and $d\left(x_{2}, x_{4}\right)=d\left(x_{4}, x_{2}\right)$, so

$$
d\left(x_{1}, x_{4}\right) \leq d\left(x_{1}, x_{3}\right)+d\left(x_{2}, x_{3}\right)+d\left(x_{4}, x_{2}\right)
$$

so by the hypothesis,

$$
d\left(x_{1}, x_{4}\right) \leq 8+10+7=25
$$

as required.
2. Suppose $A \subseteq \mathbb{R}$ is closed and $\mathbb{Q} \cap[3,4] \subseteq A$. Prove that $\pi \in A$. (Work directly from the definitions of closed/open subsets of \mathbb{R}, using the standard metric on \mathbb{R}. State any standard facts about \mathbb{Q} that you use (you don't need to prove such facts).)

Hint: one method is to assume $\pi \notin A$ and derive a contradiction.

Solution.

Suppose $\pi \notin A$. Then $\pi \in \mathbb{R} \backslash A$. Since A is closed, $\mathbb{R} \backslash A$ is open. Thus there is $\varepsilon>0$ such that $\mathcal{B}(\pi, \varepsilon) \subseteq \mathbb{R} \backslash A$. Let $\varepsilon^{\prime}=\min (\varepsilon, 0.1) ;$ then $\varepsilon^{\prime}>0$ since $\varepsilon>0$ and $0.1>0$; and $\varepsilon^{\prime} \leq \varepsilon$ and $\varepsilon^{\prime} \leq 0.1$. Then

$$
\mathcal{B}\left(\pi, \varepsilon^{\prime}\right) \subseteq \mathcal{B}(\pi, \varepsilon) \subseteq \mathbb{R} \backslash A
$$

since $\varepsilon^{\prime} \leq \varepsilon$, so

$$
\mathcal{B}\left(\pi, \varepsilon^{\prime}\right) \subseteq \mathbb{R} \backslash A
$$

and in other words,

$$
\mathcal{B}\left(\pi, \varepsilon^{\prime}\right) \cap A=\emptyset
$$

Now $\mathcal{B}\left(\pi, \varepsilon^{\prime}\right)$ is the interval $\left(\pi-\varepsilon^{\prime}, \pi+\varepsilon^{\prime}\right)$, and by the density of \mathbb{Q} in \mathbb{R}, there is $q \in \mathbb{Q}$ such that $q \in\left(\pi-\varepsilon^{\prime}, \pi+\varepsilon^{\prime}\right)$. But $3.1<\pi<3.2$, and $\varepsilon^{\prime} \leq 0.1$, so $3<\pi-\varepsilon^{\prime}<\pi<\pi+\varepsilon^{\prime}<3.3$. Therefore $3<q<3.3$, so $q \in[3,4]$. Therefore $q \in \mathbb{Q} \cap[3,4]$, but therefore by hypothesis (that $\mathbb{Q} \cap[3,4] \subseteq$), we have $q \in A$. But we had $q \in \mathcal{B}\left(\pi, \varepsilon^{\prime}\right)$. Therefore $q \in \mathcal{B}\left(\pi, \varepsilon^{\prime}\right) \cap A$, contradicting the fact that the latter set is empty.

So $\pi \in A$, as required.
3. Is the following statement true?
"Let (X, d) be a metric space and let $\left\langle C_{i}\right\rangle_{i \in J}$ be a family of closed subsets of X. (Closed with respect to d.) Then the union of the family,

$$
\bigcup_{i \in J} C_{i}
$$

is also closed."
Either prove the statement or give a counterexample (if you give a counterexample, you needn't prove the counterexample works, but make your example completely specific).

Solution. The statement is false. We work with \mathbb{R} and the standard metric.
E.g. let $J=\mathbb{N}$, and for $n \in \mathbb{N}$, let $C_{n}=[1 / n, 1]$. Then C_{n} is closed for each $n \in J$, but $\cup_{n \in \mathbb{N}} C_{n}=(0,1]$, and this set is not closed.

Another example: every singleton in \mathbb{R} is closed. Therefore if unions of families of closed sets are always closed, we'd get that every subset of \mathbb{R} is closed, which is false. E.g. take $J=(0,1]$, and for $x \in J$, let $C_{x}=\{x\}$. Then C_{x} is closed for each $x \in J$, and $\cup_{x \in(0,1]} C_{x}=(0,1]$, which is not closed.
4. Let (X, d) be a metric space. Let $\left\langle x_{i}\right\rangle_{i \in \mathbb{N}}$ be a sequence such that $x_{i} \in X$ for all $i \in \mathbb{N}$. Prove that the sequence converges to at most one point $x \in X$.

Solution. Suppose $x, y \in X$ are such that the sequence converges to both x and y. We'll prove that $x=y$.

Let $\varepsilon>0$. We'll show that $d(x, y)<\varepsilon$. Since ε is an arbitrary positive, this will prove that $d(x, y) \leq 0$, and since d is a metric, therefore $d(x, y)=0$, and $x=y$.

So to see $d(x, y)<\varepsilon$. Since $x_{i} \rightarrow x$, we can fix $N_{x} \in \mathbb{N}$ such that for all $n \geq N_{x}, d\left(x, x_{n}\right)<\varepsilon / 2$. Since $x_{i} \rightarrow y$, we can fix $N_{y} \in \mathbb{N}$ such that for all $n \geq N_{y}, d\left(y, x_{n}\right)<\varepsilon / 2$.

Let $n=\max \left(N_{x}, N_{y}\right)$. Then by choice of N_{x}, N_{y}, we have $d\left(x, x_{n}\right)<\varepsilon / 2$ and $d\left(y, x_{n}\right)<\varepsilon / 2$. But combining this with the triangle inequality and symmetry,

$$
d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y\right)=d\left(x, x_{n}\right)+d\left(y, x_{n}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon
$$

showing $d(x, y)<\varepsilon$, as required.
5. Let $X=C([0,1])$ and $d=d_{\max }$; that is,

$$
d(f, g)=\max \{|f(x)-g(x)| \mid x \in[0,1]\}
$$

Let $F: X \rightarrow \mathbb{R}$ be the function defined by

$$
F(f)=f(0.3)+f(0.7)
$$

Show that F is continuous as a function from $\left(X, d_{\max }\right)$ to $\left(\mathbb{R}, d_{\text {std }}\right)$.
Solution. Let $f \in X$ and $\varepsilon>0$. We need to find $\delta>0$ such that

$$
F " \mathcal{B}_{\max }(f, \delta) \subseteq \mathcal{B}_{\operatorname{std}}(F(f), \varepsilon),
$$

or in other words, such that

$$
d_{\mathrm{std}}(F(g), F(f))<\varepsilon
$$

whenever

$$
d_{\max }(g, f)<\delta
$$

Note that for any $g \in X$,

$$
\begin{gathered}
d_{\mathrm{std}}(F(g), F(f)) \\
=|g(0.3)+g(0.7)-(f(0.3)+f(0.7))|
\end{gathered}
$$

$$
\begin{gathered}
=|g(0.3)-f(0.3)+g(0.7)-f(0.7)| \\
\leq|g(0.3)-f(0.3)|+|g(0.7)-f(0.7)|
\end{gathered}
$$

the latter by the triangle inequality on \mathbb{R}. So

$$
\begin{equation*}
d_{\mathrm{std}}(F(g), F(f)) \leq|g(0.3)-f(0.3)|+|g(0.7)-f(0.7)| \tag{1}
\end{equation*}
$$

But

$$
d_{\max }(g, f)=\max \{|g(x)-f(x)| \mid x \in[0,1]\}
$$

and $0.3 \in[0,1]$ and $0.7 \in[0,1]$, so the "max" is taken over a collection of values including both $|g(0.3)-f(0.3)|$ and $|g(0.7)-f(0.7)|$, so

$$
|g(0.3)-f(0.3)| \leq d_{\max }(g, f)
$$

and

$$
|g(0.7)-f(0.7)| \leq d_{\max }(g, f)
$$

So the last two lines combined with (1) give

$$
\begin{equation*}
d_{\mathrm{std}}(F(g), F(f)) \leq d_{\max }(g, f)+d_{\max }(g, f)=2 d_{\max }(g, f) \tag{2}
\end{equation*}
$$

So if we make g "close" to f in $d_{\max }$, then $F(g)$ will be at most twice this distance from $F(f)$ in $d_{\text {std }}$, which is still quite close. And in fact then, if we set $\delta=\varepsilon / 2$, then for all

$$
g \in \mathcal{B}_{\max }(f, \delta)=\mathcal{B}_{\max }(f, \varepsilon / 2)
$$

we have $d_{\max }(g, f)<\varepsilon / 2$, so then by (2),

$$
d_{\mathrm{std}}(F(g), F(f)) \leq 2 d_{\max }(f, g)<2(\varepsilon / 2)=\varepsilon
$$

So

$$
F " \mathcal{B}_{\max }(f, \delta) \subseteq \mathcal{B}_{\mathrm{std}}(F(f), \varepsilon),
$$

and since $\varepsilon>0, \delta=\varepsilon / 2>0$ also, as required.
So F is continuous.

