1.

(a)

Let A be the interval (—2,—1) U (1,2). Prove that A is an open set (in
(R, dsta))-

Solution.
Let © € A. We find an open interval I such that z € I C A (to verify the
original definition of openness for subsets of R).

Now either x € (—2,—1) or z € (1, 2).

If © € (—2,—1) then let I = (—2,—1). Then I is an open interval, and
xel=(-2-1)C A, as required.

If z € (1,2) then let I = (1,2), and similarly, I is an open interval, and
x €l =(1,2) C A, as required.

Therefore A is open.

Alternatively you can use the open ball definition of openness: given = €
A, if © € (—2,—1) then let ¢ = min(x — (—2), —1 — z); note that since
—2 < x < —1 then € > 0, and that

B(z,e)={z€R | |z —z| <e}

={zeR|z-—ec<z<z+e}
But —2 < z—e¢ since € < 2+ (by definition of €), and similarly x4+ < —1,
and therefore

:{ZER‘ —2<zr—-e<z<z+e< -1}

C{zeR| —2<z2<-1}=(-2,-1).
So B(z,e) C (—2,—1), as required.

Do a similar thing when for when = € (1,2). (Or in fact by symmetry:
just reflect everything across = 0; dgyq is symmetric under reflections.)

Let A, B be non-empty sets such that AN B = . Let X = AU B. For
z,y € X define

ifx =y,
ife,yec A& xz#uy,
ifex,ye B& x #y,
ifre A, yeB,
ifre B, ye A

d(z,y) =

W W = O

(b1) Prove the triangle inequality for (X,d). (Hint: given z,y,z € X,
you’ll need to consider different cases depending on which points are
in A and which are in B.)

Solution.
We must prove that for all z,y,z € X,

d(z,2) < d(z,y) + d(y, 2).



We prove several claims. Note first that for all a,b € X, d(a,b) =0
or = 1 or = 3, so in particular d(a,b) > 0. And note that d(a,a) =0
(by the first clause of the definition of d) and if a # b then d(a,b) > 1
since d(a,b) = 1 or = 3, since one of the last 4 clauses of the definition
of d must apply.

In the following, given a triple (z,y,2) in X3, we say “the triple
(z,y, z) satisfies the triangle inequality” to mean

d(z,z) < d(z,y) + d(y, 2).

This is specific to the ordering of the elements in the triple: e.g. say-
ing “(z,y, z) satisfies the triangle inequality” is different to asserting
“(y,x, z) satisifies the triangle inequality”, since the latter says

d(y, z) < d(y,x) + d(z, z)

instead. We just need to show that for all (z,y,z) € X3, the triple
(z,y, 2z) satisfies the triangle inequality. We’'ll do this in 4 claims,
which each prove that the triangle inequality holds for certain classes
of triples (z,y, 2).

Claim 1 will deal with triples (x,y, z) s.t. = z; Claim 2 with those
s.t. ¢ # z and z, z come from the same set, i.e. [x,z2 € Aorx,z € BJ;
Claims 3 and 4 with those s.t. © # z and z,z come from different
sets: Claim 3 with those s.t. © # z and € A and z € B; Claim 4
with those s.t. * # z and z € B and z € B.

Note that any triple (z, y, z) will then be covered by one of the Claims,
so this will prove the triangle inequality fully.

Claim 1. For all z,y,z € X, if v = 2, then (x,y, z) satisfies the
triangle inequality.

Proof. Let x,y,z € X s.t. x = z. From the remarks above, d(z,y) >
0 and d(y, z) > 0, and therefore

0 <d(z,y) +d(y, 2)
and so since d(zx,z) = 0,
d(z,z) < d(z,y) + d(y, 2)

as required.

Claim 2. For all z,y,z € X, if © # z but [x,z € A or z,z € B] then
(z,y, z) satisfies the triangle inequality. (This case is iff the second

or third clause in the definition of d applies to computing d(z, z), i.e.
iff d(x,z) =1).

Proof. Let z,y,z € X as in the statement of the claim. Since
d(x,z) =1, we just need to show that

1 <d(z,y) +d(y, 2).



But z # z. Soeitherz Zyory # z. (If z =y and y = z then z = z,
contra.)

If © # y then d(z,y) > 1 (as in the remarks above, since x # y, one
of the last 4 clauses of the definition of d apply, so d(z,y) = 1 or
d(z,y) = 3). And since d(z, z) > 0, we get

140 < d(x,y) +d(y, 2)
and therefore
d(z,z) =1 <d(z,y) +d(y,2),

as required.
If y # z then similarly d(y, z) > 1, and d(x,y) > 0, and therefore

0+1<d(z,y)+d(y, 2),

SO
d(z,z) =1 < d(z,y) +d(y, 2),

as required.

Claim 3. For all 2/,y/,2" € X s.t. 2/ # 2 and 2/ € A and 2’ € B,
then (2/,y’,2’) satisfies the triangle inequality. (This case is iff the
4th clause in the definition of d applies to computing d(z’,2’), so
implies d(a, 2") = 3).

Proof. Let 2/,9y',2’ € X as in the statement of the claim. So
d(z',7") = 3 by the def’n of d. So we need to show that

3<d@,y)+dy. 7).

Case 1. ¢/ € A.
Then d(z’,y’) > 0 and since y' € A and 2’ € B, d(y,z') = 3. Hence

d(z',2)=3=0+3<d(,y)+d, 7).

Case 2. ¢y’ € B.
Then since 2’ € Aand y' € B, d(2’,y') = 3, and anyway d(y', 2") > 0.
Hence

d(2',2')=3=340<d(,y)+d, 7).

This covers all cases, finishing the proof of Claim 3.

Claim 4. For all x,y,z € X st. x # zand x € B and z € A, we
have d(x,z) < d(x,y)+ d(y, z). (This case is iff the 5th clause in the
definition of d applies to computing d(z, z), so implies d(z, z) = 3).

Proof. Note that d is symmetric: for all a,b € X, d(a,b) = d(b,a):
if @ = b then this is trivial; if a,b € A or a,b € B then d(a,b) =
1 = d(bya); f [a € Aand b € Bl or [a € B and b € A] then
d(a,b) =3 =d(b,a)).



We can use this to deduce Claim 4 from Claim 3, because: Let
z,y,z € X as in the statement of Claim 4. Then by the symme-
try of d,

d(z,2) = d(z,2)

and since z € A and x € B, by Claim 3 applied to the triple
(2,y,2") = (2,y,2) (so here ' = z, y =y, 2’ = x), we have
d(z’,2") < d(a’,y') + d(y', 2),
ie.
d(z,x) < d(z,y) +d(y,x)
but then again by symmetry of d,

d(z,2) < d(y,2) +d(z,y) = d(z,y) + d(y, 2)

by comm of +. This is the triangle inequality for the triple (z,y, z),
as required.

The four claims prove the triangle inequality for d, since they cover
all possible cases for z,y,z € X.

Remark: T just used the symmetry method to prove Claim 4 for il-
lustration. It would have been faster just to prove it in the same way
Claim 3 was proven.

(b2) Assume that (X, d) (as defined above) is a metric space. Show that
for every set D C X, D is open in (X, d).

Solution. Let D C X. We claim that D is open. For let z € D. Let
€ =1. Then € > 0 and
B(x,e) C D.

For if z € B(x,¢) then
d(z,z) <1,

but by the defintion of d, this implies d(z,z) = 0, and again by the
definition of d (or using that d is a metric) this implies z = x. But
x € D by hypothesis, so z € D, as required.

(c) Let (X',d') be an arbitrary metric space. Suppose z1,Z2,x3,24 € X
are such that d(zq1,23) = 8, d(x2,23) = 10, d(x4,22) = 7. Prove that
d($1,$4) S 25.

Solution.
By the triangle inequality,

d(Il, 1‘4) S d(l‘l, Ig) =+ d(xg, .’,E4)
and again by the triangle inequality, d(zs,24) < d(z3,22) + d(22,x4), so

d($1,$4) < d(l‘l,{)ﬂg) + d(fL‘g, CEQ) + d((EQ,LL‘4).



By symmetry, d(zs,z2) = d(z2,z3) and d(z2,x4) = d(z4,22), sO
d(z1,24) < d(z1,23) + d(22,23) + d(24, 22),
so by the hypothesis,
d(x1,24) <8410+ 7 = 25,

as required.

2. Suppose A C R is closed and QN [3,4] C A. Prove that 7 € A. (Work
directly from the definitions of closed/open subsets of R, using the standard
metric on R. State any standard facts about Q that you use (you don’t need to
prove such facts).)

Hint: one method is to assume 7 ¢ A and derive a contradiction.

Solution.
Suppose m ¢ A. Then m € R\ A. Since A is closed, R\ A is open. Thus there is
€ > 0 such that B(m,e) C R\A. Let &’ = min(e,0.1); then ¢’ > 0 since ¢ > 0
and 0.1 > 0; and ¢’ < e and ¢’ <0.1. Then

B(m,e') C B(m,e) CR\A,

since ¢’ < ¢, so
B(m, ') CR\A,

and in other words,
B(m,e)nA=10.

Now B(m,¢’) is the interval (m — &', + £’), and by the density of Q in R, there
is ¢ € Q such that ¢ € (m — &/, m+¢'). But 3.1 < 7 < 3.2, and ¢’ < 0.1, so
3<m—¢& <m<m+e <3.3. Therefore 3 < ¢ < 3.3, s0 q € [3,4]. Therefore
q € QN [3,4], but therefore by hypothesis (that Q N [3,4] C), we have ¢ € A.
But we had ¢ € B(w,¢’). Therefore g € B(m, ') N A, contradicting the fact that
the latter set is empty.

So 7 € A, as required.

3. Is the following statement true?
“Let (X, d) be a metric space and let (C;),.; be a family of closed subsets
of X. (Closed with respect to d.) Then the union of the family,

U Ci7
ic€J

is also closed.”

Either prove the statement or give a counterexample (if you give a counterex-
ample, you needn’t prove the counterexample works, but make your example
completely specific).

Solution. The statement is false. We work with R and the standard metric.



E.g. let J =N, and for n € N, let C,, = [1/n, 1]. Then C, is closed for each
n € J, but U,enCy, = (0, 1], and this set is not closed.

Another example: every singleton in R is closed. Therefore if unions of fam-
ilies of closed sets are always closed, we’'d get that every subset of R is closed,
which is false. E.g. take J = (0,1], and for z € J, let C;; = {z}. Then C, is
closed for each x € J, and U,e(0,1]C = (0, 1], which is not closed.

4. Let (X,d) be a metric space. Let (x;),.y be a sequence such that z; € X
for all ¢ € N. Prove that the sequence converges to at most one point x € X.

Solution. Suppose x,y € X are such that the sequence converges to both z
and y. We'll prove that z = y.

Let € > 0. We'll show that d(x,y) < €. Since ¢ is an arbitrary positive, this
will prove that d(z,y) < 0, and since d is a metric, therefore d(z,y) = 0, and

T =1.
So to see d(z,y) < e. Since z; — z, we can fix N, € N such that for all
n > Ng, d(z,z,) < /2. Since z; — y, we can fix N, € N such that for all
n> Ny, dy,z,) <e/2.
Let n = max(N,, N,). Then by choice of N, N, we have d(x, z,,) < £/2 and
d(y,x,) < £/2. But combining this with the triangle inequality and symmetry,

d(z,y) < d(z,zn) +d(zn,y) =d(z,2,) +d(y, z,) <e/2+¢e/2 =¢,
showing d(z,y) < €, as required.
5. Let X = C([0,1]) and d = dpax; that is,
d(f,g) = max{|f(z) — g(z)| | = € [0, 1]}.
Let F: X — R be the function defined by
F(f) = £(0.3) + f(0.7).

Show that F' is continuous as a function from (X, dmax) to (R, dstq)-
Solution. Let f € X and € > 0. We need to find § > 0 such that
F“Brnax(f,0) € Bsta(F(f), ),
or in other words, such that
dsa(F(9), F(f)) <e

whenever

dmax(g, ) < 9.
Note that for any g € X,

dsa(F(g9), F(f))

= 19(0.3) +9(0.7) = (£(0.3) + £(0.7))]



=19(0.3) — £(0.3) + g(0.7) — f(0.7)]
< 19(0.3) = £(0.3)[ +19(0.7) = f(0.7)],
the latter by the triangle inequality on R. So
deca(F(9). F(£)) < 9(0.3) — F(0.3)| + |9(0.7) — £(0.7). 1)

But
dmax (9, f) = max{|g(x) — f(2)| | z € [0,1]},

and 0.3 € [0,1] and 0.7 € [0, 1], so the “max” is taken over a collection of values
including both |¢(0.3) — f(0.3)] and |¢g(0.7) — £(0.7)], so

9(0.3) = £(0.3)] < dmax(g; f),

and
|g(07) - f(07)| S dmax(g7 f)

So the last two lines combined with (1) give

dstd(F(g)a F(f)) < dmax(g7 f) + dmax(ga f) = 2dmax(97 f) (2)

So if we make g “close” to f in dpax, then F(g) will be at most twice this
distance from F'(f) in dsq, which is still quite close. And in fact then, if we set
d = €/2, then for all

g€ Bmax(fa 6) = Bmax(fa 5/2)7

we have dmax(g, f) < &/2, so then by (2),

dstd(F(g)7F(f)) S 2dmax(f7 g) < 2(8/2) = €.

So
F“Bmax(fa 5) g Bstd(F(f)v 5)7

and since € > 0, § = /2 > 0 also, as required.
So F' is continuous.



