
1.

(a) Let A be the interval (−2,−1) ∪ (1, 2). Prove that A is an open set (in
(R, dstd)).

Solution.
Let x ∈ A. We find an open interval I such that x ∈ I ⊆ A (to verify the
original definition of openness for subsets of R).

Now either x ∈ (−2,−1) or x ∈ (1, 2).

If x ∈ (−2,−1) then let I = (−2,−1). Then I is an open interval, and
x ∈ I = (−2,−1) ⊆ A, as required.

If x ∈ (1, 2) then let I = (1, 2), and similarly, I is an open interval, and
x ∈ I = (1, 2) ⊆ A, as required.

Therefore A is open.

Alternatively you can use the open ball definition of openness: given x ∈
A, if x ∈ (−2,−1) then let ε = min(x − (−2),−1 − x); note that since
−2 < x < −1 then ε > 0, and that

B(x, ε) = {z ∈ R
∣∣ |x− z| < ε}

= {z ∈ R
∣∣ x− ε < z < x+ ε}

But −2 ≤ x−ε since ε ≤ 2+x (by definition of ε), and similarly x+ε ≤ −1,
and therefore

= {z ∈ R
∣∣ − 2 ≤ x− ε < z < x+ ε ≤ −1}

⊆ {z ∈ R
∣∣ − 2 < z < −1} = (−2,−1).

So B(x, ε) ⊆ (−2,−1), as required.

Do a similar thing when for when x ∈ (1, 2). (Or in fact by symmetry:
just reflect everything across x = 0; dstd is symmetric under reflections.)

(b) Let A,B be non-empty sets such that A ∩ B = ∅. Let X = A ∪ B. For
x, y ∈ X define

d(x, y) =


0 if x = y,
1 if x, y ∈ A & x 6= y,
1 if x, y ∈ B & x 6= y,
3 if x ∈ A, y ∈ B,
3 if x ∈ B, y ∈ A.

(b1) Prove the triangle inequality for (X, d). (Hint: given x, y, z ∈ X,
you’ll need to consider different cases depending on which points are
in A and which are in B.)

Solution.
We must prove that for all x, y, z ∈ X,

d(x, z) ≤ d(x, y) + d(y, z).
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We prove several claims. Note first that for all a, b ∈ X, d(a, b) = 0
or = 1 or = 3, so in particular d(a, b) ≥ 0. And note that d(a, a) = 0
(by the first clause of the definition of d) and if a 6= b then d(a, b) ≥ 1
since d(a, b) = 1 or = 3, since one of the last 4 clauses of the definition
of d must apply.

In the following, given a triple (x, y, z) in X3, we say “the triple
(x, y, z) satisfies the triangle inequality” to mean

d(x, z) ≤ d(x, y) + d(y, z).

This is specific to the ordering of the elements in the triple: e.g. say-
ing “(x, y, z) satisfies the triangle inequality” is different to asserting
“(y, x, z) satisifies the triangle inequality”, since the latter says

d(y, z) ≤ d(y, x) + d(x, z)

instead. We just need to show that for all (x, y, z) ∈ X3, the triple
(x, y, z) satisfies the triangle inequality. We’ll do this in 4 claims,
which each prove that the triangle inequality holds for certain classes
of triples (x, y, z).

Claim 1 will deal with triples (x, y, z) s.t. x = z; Claim 2 with those
s.t. x 6= z and x, z come from the same set, i.e. [x, z ∈ A or x, z ∈ B];
Claims 3 and 4 with those s.t. x 6= z and x, z come from different
sets: Claim 3 with those s.t. x 6= z and x ∈ A and z ∈ B; Claim 4
with those s.t. x 6= z and x ∈ B and z ∈ B.

Note that any triple (x, y, z) will then be covered by one of the Claims,
so this will prove the triangle inequality fully.

Claim 1. For all x, y, z ∈ X, if x = z, then (x, y, z) satisfies the
triangle inequality.

Proof. Let x, y, z ∈ X s.t. x = z. From the remarks above, d(x, y) ≥
0 and d(y, z) ≥ 0, and therefore

0 ≤ d(x, y) + d(y, z)

and so since d(x, z) = 0,

d(x, z) ≤ d(x, y) + d(y, z)

as required.

Claim 2. For all x, y, z ∈ X, if x 6= z but [x, z ∈ A or x, z ∈ B] then
(x, y, z) satisfies the triangle inequality. (This case is iff the second
or third clause in the definition of d applies to computing d(x, z), i.e.
iff d(x, z) = 1).

Proof. Let x, y, z ∈ X as in the statement of the claim. Since
d(x, z) = 1, we just need to show that

1 ≤ d(x, y) + d(y, z).
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But x 6= z. So either x 6= y or y 6= z. (If x = y and y = z then x = z,
contra.)

If x 6= y then d(x, y) ≥ 1 (as in the remarks above, since x 6= y, one
of the last 4 clauses of the definition of d apply, so d(x, y) = 1 or
d(x, y) = 3). And since d(x, z) ≥ 0, we get

1 + 0 ≤ d(x, y) + d(y, z)

and therefore
d(x, z) = 1 ≤ d(x, y) + d(y, z),

as required.

If y 6= z then similarly d(y, z) ≥ 1, and d(x, y) ≥ 0, and therefore

0 + 1 ≤ d(x, y) + d(y, z),

so
d(x, z) = 1 ≤ d(x, y) + d(y, z),

as required.

Claim 3. For all x′, y′, z′ ∈ X s.t. x′ 6= z′ and x′ ∈ A and z′ ∈ B,
then (x′, y′, z′) satisfies the triangle inequality. (This case is iff the
4th clause in the definition of d applies to computing d(x′, z′), so
implies d(x′, z′) = 3).

Proof. Let x′, y′, z′ ∈ X as in the statement of the claim. So
d(x′, z′) = 3 by the def’n of d. So we need to show that

3 ≤ d(x′, y′) + d(y′, z′).

Case 1. y′ ∈ A.
Then d(x′, y′) ≥ 0 and since y′ ∈ A and z′ ∈ B, d(y′, z′) = 3. Hence

d(x′, z′) = 3 = 0 + 3 ≤ d(x′, y′) + d(y′, z′).

Case 2. y′ ∈ B.
Then since x′ ∈ A and y′ ∈ B, d(x′, y′) = 3, and anyway d(y′, z′) ≥ 0.
Hence

d(x′, z′) = 3 = 3 + 0 ≤ d(x′, y′) + d(y′, z′).

This covers all cases, finishing the proof of Claim 3.

Claim 4. For all x, y, z ∈ X s.t. x 6= z and x ∈ B and z ∈ A, we
have d(x, z) ≤ d(x, y) + d(y, z). (This case is iff the 5th clause in the
definition of d applies to computing d(x, z), so implies d(x, z) = 3).

Proof. Note that d is symmetric: for all a, b ∈ X, d(a, b) = d(b, a):
if a = b then this is trivial; if a, b ∈ A or a, b ∈ B then d(a, b) =
1 = d(b, a); if [a ∈ A and b ∈ B] or [a ∈ B and b ∈ A] then
d(a, b) = 3 = d(b, a)).
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We can use this to deduce Claim 4 from Claim 3, because: Let
x, y, z ∈ X as in the statement of Claim 4. Then by the symme-
try of d,

d(x, z) = d(z, x)

and since z ∈ A and x ∈ B, by Claim 3 applied to the triple
(x′, y′, z′) = (z, y, x) (so here x′ = z, y′ = y, z′ = x), we have

d(x′, z′) ≤ d(x′, y′) + d(y′, z′),

i.e.
d(z, x) ≤ d(z, y) + d(y, x)

but then again by symmetry of d,

d(x, z) ≤ d(y, z) + d(x, y) = d(x, y) + d(y, z)

by comm of +. This is the triangle inequality for the triple (x, y, z),
as required.

The four claims prove the triangle inequality for d, since they cover
all possible cases for x, y, z ∈ X.

Remark: I just used the symmetry method to prove Claim 4 for il-
lustration. It would have been faster just to prove it in the same way
Claim 3 was proven.

(b2) Assume that (X, d) (as defined above) is a metric space. Show that
for every set D ⊆ X, D is open in (X, d).

Solution. Let D ⊆ X. We claim that D is open. For let x ∈ D. Let
ε = 1. Then ε > 0 and

B(x, ε) ⊆ D.

For if z ∈ B(x, ε) then
d(z, x) < 1,

but by the defintion of d, this implies d(x, z) = 0, and again by the
definition of d (or using that d is a metric) this implies z = x. But
x ∈ D by hypothesis, so z ∈ D, as required.

(c) Let (X ′, d′) be an arbitrary metric space. Suppose x1, x2, x3, x4 ∈ X
are such that d(x1, x3) = 8, d(x2, x3) = 10, d(x4, x2) = 7. Prove that
d(x1, x4) ≤ 25.

Solution.
By the triangle inequality,

d(x1, x4) ≤ d(x1, x3) + d(x3, x4)

and again by the triangle inequality, d(x3, x4) ≤ d(x3, x2) + d(x2, x4), so

d(x1, x4) ≤ d(x1, x3) + d(x3, x2) + d(x2, x4).
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By symmetry, d(x3, x2) = d(x2, x3) and d(x2, x4) = d(x4, x2), so

d(x1, x4) ≤ d(x1, x3) + d(x2, x3) + d(x4, x2),

so by the hypothesis,

d(x1, x4) ≤ 8 + 10 + 7 = 25,

as required.

2. Suppose A ⊆ R is closed and Q ∩ [3, 4] ⊆ A. Prove that π ∈ A. (Work
directly from the definitions of closed/open subsets of R, using the standard
metric on R. State any standard facts about Q that you use (you don’t need to
prove such facts).)

Hint: one method is to assume π /∈ A and derive a contradiction.

Solution.
Suppose π /∈ A. Then π ∈ R\A. Since A is closed, R\A is open. Thus there is
ε > 0 such that B(π, ε) ⊆ R\A. Let ε′ = min(ε, 0.1); then ε′ > 0 since ε > 0
and 0.1 > 0; and ε′ ≤ ε and ε′ ≤ 0.1. Then

B(π, ε′) ⊆ B(π, ε) ⊆ R\A,

since ε′ ≤ ε, so
B(π, ε′) ⊆ R\A,

and in other words,
B(π, ε′) ∩A = ∅.

Now B(π, ε′) is the interval (π − ε′, π + ε′), and by the density of Q in R, there
is q ∈ Q such that q ∈ (π − ε′, π + ε′). But 3.1 < π < 3.2, and ε′ ≤ 0.1, so
3 < π − ε′ < π < π + ε′ < 3.3. Therefore 3 < q < 3.3, so q ∈ [3, 4]. Therefore
q ∈ Q ∩ [3, 4], but therefore by hypothesis (that Q ∩ [3, 4] ⊆), we have q ∈ A.
But we had q ∈ B(π, ε′). Therefore q ∈ B(π, ε′)∩A, contradicting the fact that
the latter set is empty.

So π ∈ A, as required.

3. Is the following statement true?
“Let (X, d) be a metric space and let 〈Ci〉i∈J be a family of closed subsets

of X. (Closed with respect to d.) Then the union of the family,⋃
i∈J

Ci,

is also closed.”
Either prove the statement or give a counterexample (if you give a counterex-

ample, you needn’t prove the counterexample works, but make your example
completely specific).

Solution. The statement is false. We work with R and the standard metric.
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E.g. let J = N, and for n ∈ N, let Cn = [1/n, 1]. Then Cn is closed for each
n ∈ J , but ∪n∈NCn = (0, 1], and this set is not closed.

Another example: every singleton in R is closed. Therefore if unions of fam-
ilies of closed sets are always closed, we’d get that every subset of R is closed,
which is false. E.g. take J = (0, 1], and for x ∈ J , let Cx = {x}. Then Cx is
closed for each x ∈ J , and ∪x∈(0,1]Cx = (0, 1], which is not closed.

4. Let (X, d) be a metric space. Let 〈xi〉i∈N be a sequence such that xi ∈ X
for all i ∈ N. Prove that the sequence converges to at most one point x ∈ X.

Solution. Suppose x, y ∈ X are such that the sequence converges to both x
and y. We’ll prove that x = y.

Let ε > 0. We’ll show that d(x, y) < ε. Since ε is an arbitrary positive, this
will prove that d(x, y) ≤ 0, and since d is a metric, therefore d(x, y) = 0, and
x = y.

So to see d(x, y) < ε. Since xi → x, we can fix Nx ∈ N such that for all
n ≥ Nx, d(x, xn) < ε/2. Since xi → y, we can fix Ny ∈ N such that for all
n ≥ Ny, d(y, xn) < ε/2.

Let n = max(Nx, Ny). Then by choice of Nx, Ny, we have d(x, xn) < ε/2 and
d(y, xn) < ε/2. But combining this with the triangle inequality and symmetry,

d(x, y) ≤ d(x, xn) + d(xn, y) = d(x, xn) + d(y, xn) < ε/2 + ε/2 = ε,

showing d(x, y) < ε, as required.

5. Let X = C([0, 1]) and d = dmax; that is,

d(f, g) = max{|f(x)− g(x)|
∣∣ x ∈ [0, 1]}.

Let F : X → R be the function defined by

F (f) = f(0.3) + f(0.7).

Show that F is continuous as a function from (X, dmax) to (R, dstd).

Solution. Let f ∈ X and ε > 0. We need to find δ > 0 such that

F“Bmax(f, δ) ⊆ Bstd(F (f), ε),

or in other words, such that

dstd(F (g), F (f)) < ε

whenever
dmax(g, f) < δ.

Note that for any g ∈ X,

dstd(F (g), F (f))

= |g(0.3) + g(0.7)− (f(0.3) + f(0.7))|
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= |g(0.3)− f(0.3) + g(0.7)− f(0.7)|

≤ |g(0.3)− f(0.3)|+ |g(0.7)− f(0.7)|,

the latter by the triangle inequality on R. So

dstd(F (g), F (f)) ≤ |g(0.3)− f(0.3)|+ |g(0.7)− f(0.7)|. (1)

But
dmax(g, f) = max{|g(x)− f(x)|

∣∣ x ∈ [0, 1]},

and 0.3 ∈ [0, 1] and 0.7 ∈ [0, 1], so the “max” is taken over a collection of values
including both |g(0.3)− f(0.3)| and |g(0.7)− f(0.7)|, so

|g(0.3)− f(0.3)| ≤ dmax(g, f),

and
|g(0.7)− f(0.7)| ≤ dmax(g, f).

So the last two lines combined with (1) give

dstd(F (g), F (f)) ≤ dmax(g, f) + dmax(g, f) = 2dmax(g, f). (2)

So if we make g “close” to f in dmax, then F (g) will be at most twice this
distance from F (f) in dstd, which is still quite close. And in fact then, if we set
δ = ε/2, then for all

g ∈ Bmax(f, δ) = Bmax(f, ε/2),

we have dmax(g, f) < ε/2, so then by (2),

dstd(F (g), F (f)) ≤ 2dmax(f, g) < 2(ε/2) = ε.

So
F“Bmax(f, δ) ⊆ Bstd(F (f), ε),

and since ε > 0, δ = ε/2 > 0 also, as required.
So F is continuous.
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