Midterm 2 Review Problems
(Note: all solutions, including examples, should be explained, unless indicated otherwise.)

1. [With correction to τ and τ^{\prime}; both were omitting the empty set originally.] Let $X=\{0,1,2,3\}$ and $Y=\{0,1,2\}$. Let $\tau=\{\emptyset,\{0\},\{0,1\},\{0,1,2,3\}\}$ and let $\tau^{\prime}=\{\emptyset,\{0\},\{0,1\},\{0,2\},\{0,1,2\}\}$. (Then (X, τ) and $\left(Y, \tau^{\prime}\right)$ are both topological spaces; you may assume this.)

Give an example of a function $f: X \rightarrow Y$ which is not continuous (with respect to these topologies).
2. Prove that if \mathfrak{b} is a base for a topology τ on Y, and $f: X \rightarrow Y$, then

$$
\left\{f^{-1}(U) \mid U \in \mathfrak{b}\right\}
$$

is a base for a topology on τ^{\prime} on X. Show, moreover, that f is continuous from $\left(X, \tau^{\prime}\right)$ to (Y, τ), and in fact that τ^{\prime} is the smallest topology with this property. (I.e., if $\tau^{\prime \prime}$ is another topology on X such that f is continuous from $\left(X, \tau^{\prime \prime}\right)$ to (Y, τ), then $\left.\tau^{\prime} \subseteq \tau^{\prime \prime}.\right)$
3. Let X be the collection of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$. For each $n \in \mathbb{N}$, and each function $\sigma:\{0,1, \ldots, n-1\} \rightarrow \mathbb{N}$, let $N_{\sigma} \subseteq X$ be the collection of functions

$$
N_{\sigma}=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \sigma=f \upharpoonright\{0,1 \ldots, n-1\}\} .
$$

So, for example, if σ_{0} is the function with domain $\{0,1,2\}$, such that $\sigma_{0}(0)=3$, $\sigma_{0}(1)=5$ and $\sigma_{0}(2)=0$, then

$$
\begin{gathered}
N_{\sigma_{0}}=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \sigma_{0}=f \upharpoonright\{0,1,2\}\right\} \\
=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f(0)=3, f(1)=5, f(2)=0 .\}
\end{gathered}
$$

Let \mathfrak{b} be the collection of all sets of the form N_{σ} (ranging over all σ as above).
(a) Show that \mathfrak{b} is a base, for a topology τ on X.
(b) Let C be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that 5 is not in the range of f. Show that C is closed in this topology.
(c) Show that the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(0)=3$ is both open and closed in this topology.
(d) Prove that X is uncountable.
(This topological space is called Baire space.)
4. Let C be the Cantor set. (a) Let $x \in C$ and $\varepsilon>0$. Show that there is some $y \in C$ such that $y \neq x$, but $|y-x|<\varepsilon$. (b) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and f is constant on $\mathbb{R} \backslash C$. Prove that f is constant.
5. Let $f:[0,1] \rightarrow(0,1]$. Prove that there is some $n \in \mathbb{N}$ such that the set $f^{-1}((1 / n, 1])$ is uncountable.
6. Let X be the collection of all polynomial functions with domain $[0,100]$. Let τ be the topology on X given by the max-metric on X. Construct a countable base for (X, τ) (and prove it is a base).
7. (a) Prove that in a topological space X, for any $A \subseteq X, \mathrm{Cl}(A)$ is the set of all $z \in X$ such that every open neighbourhood U of z is such that $U \cap A \neq \emptyset$.
(b) Let $f: X \rightarrow Y$ be continuous between top spaces. Does it follow that $f^{-1}(\mathrm{Cl}(A)) \subseteq \mathrm{Cl}\left(f^{-1}(A)\right)$ for every $A \subseteq Y$? What if " \subseteq " is replaced by " \supseteq "?
(c) Suppose (X, τ) is a top space such that $\operatorname{Int}(\mathrm{Cl}(U))=U$ for every $U \in \tau$. Prove that every U in τ is closed (w.r.t. τ). (Hint: argue by contradiction. Start with an open set U which is not closed, and work with it to to construct an open set U^{\prime} such that $\operatorname{Int}\left(\mathrm{Cl}\left(U_{1}\right)\right) \neq U_{1}$.)
8. Prove that every closed set is sequentially closed in a topological space.
9. For each $n \in \mathbb{N}$, let $D_{n} \subseteq \mathbb{R}^{2}$ be an open disc, $D_{n}=\mathcal{B}\left(p_{n}, \varepsilon_{n}\right)$, such that for each $n, \mathcal{B}\left(p_{n+1}, 2 \varepsilon_{n+1}\right) \subseteq D_{n}$, and $0<\varepsilon_{n} \leq 2^{-n}$. Prove that $\cap_{n \in \mathbb{N}} D_{n}$ consists of exactly one point. (Hint: we proved a related fact about \mathbb{R}.)

