
Midterm 2 Review Problems - Hints / Sketched Solutions
(Note: all solutions, including examples, should be explained, unless indicated
otherwise.)

Sketched solutions are not intended to be full proofs; you should give full proofs
on the test.

1. [With correction to τ and τ ′; both were omitting the empty set originally.]
Let X = {0, 1, 2, 3} and Y = {0, 1, 2}. Let τ = {∅, {0}, {0, 1}, {0, 1, 2, 3}} and
let τ ′ = {∅, {0}, {0, 1}, {0, 2}, {0, 1, 2}}. (Then (X, τ) and (Y, τ ′) are both topo-
logical spaces; you may assume this.)

Give an example of a function f : X → Y which is not continuous (with
respect to these topologies).

Hint:
You need to define a function such that for some U ∈ τ ′, you have f−1(U) /∈ τ .
This can be arranged either with U = {0, 1}, or with U = {0, 2}.

2. Prove that if b is a base for a topology τ on Y , and f : X → Y , then

{f−1(U) | U ∈ b}

is a base for a topology on τ ′ on X. Show, moreover, that f is continuous from
(X, τ ′) to (Y, τ), and in fact that τ ′ is the smallest topology with this property.
(I.e., if τ ′′ is another topology on X such that f is continuous from (X, τ ′′) to
(Y, τ), then τ ′ ⊆ τ ′′.)

Hint:
Use the proposition proved in class, i.e. that a collection b1 of subsets of X1 is
a base for a topology on X1 iff: ∪b1 = X1 and for all U1, U2 ∈ b1, we have that
U1 ∩ U2 can be formed as the union of some elements from b1. I discussed the
minimality property of τ ′ in class.

3. Let X be the collection of all functions f : N → N. For each n ∈ N,
and each function σ : {0, 1, . . . , n − 1} → N, let Nσ ⊆ X be the collection of
functions

Nσ = {f : N→ N | σ = f �{0, 1 . . . , n− 1}}.

So, for example, if σ0 is the function with domain {0, 1, 2}, such that σ0(0) = 3,
σ0(1) = 5 and σ0(2) = 0, then

Nσ0 = {f : N→ N | σ0 = f �{0, 1, 2}}

= {f : N→ N | f(0) = 3, f(1) = 5, f(2) = 0.}.

Let b be the collection of all sets of the form Nσ (ranging over all σ as above).
(a) Show that b is a base, for a topology τ on X.
(b) Let C be the set of all functions f : N → N such that 5 is not in the

range of f . Show that C is closed in this topology.
(c) Show that the set of all functions f : N→ N such that f(0) = 3 is both

open and closed in this topology.
(d) Prove that X is uncountable.
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(This topological space is called Baire space.)

Hint:
(a) Use the same proposition as mentioned in the hint for problem 2. As part
of this, let n1 ∈ N and σ1 : {0, 1, . . . , n1 − 1} → N and similarly for n2 and
σ2. You must show that U = Nσ1 ∩ Nσ2 is the union of some elements of b,
i.e. the union of some collection of Nσ’s. Show that in fact, either U = ∅, or
U = Nσ1

, or U = Nσ2
; and that this implies the former statement. Which

of these cases attains depends on whether n1 ≤ n2 or n1 > n2, and whether
σ1 �min(n1, n2) = σ2 �min(n1, n2).

(b) The complement of C is the set of all f such that 5 ∈ rg(f). But
5 ∈ rg(f) iff there’s n ∈ N such that f(n) = 5, which is iff there’s k ∈ N such
that 5 ∈ rg(σ), where σ = f � {0, 1, . . . , k − 1}, which is iff f ∈ Nσ for some σ
with 5 ∈ rg(σ). The latter condition describes an open set.

(c) The proof of openness is similar to (b); in fact it’s easier, as f(0) = 3 iff
f ∈ Nσ, where σ : {0}N is the function such that σ(0) = 3. For closedness, note
that f(0) 6= 3 iff f(0) = k for some k ∈ N\{3}, which is iff f ∈ Nσ for some
σ : {0} → N, with σ(0) = k, some k ∈ N\{3}.

(d) Let 〈fn〉n∈N be an enumeration of functions in X. Construct a function
g : N→ N such that g 6= fn for each n, by diagonalizing: define g(n) such that
g(n) 6= fn(n) for each n.

4. Let C be the Cantor set. (a) Let x ∈ C and ε > 0. Show that there is
some y ∈ C such that y 6= x, but |y − x| < ε. (b) Suppose that f : R→ R is a
continuous function, and f is constant on R\C. Prove that f is constant.

Hint:
(a) (I reversed the roles of the variables x, y.) Let y ∈ C and ε > 0. Let n ∈ N
be large enough that 1/3n < ε. Recall that Cn is the union of disjoint closed
intervals of length 1/3n. (Here Cn, n ∈ N, are the sets used to construct C,
by C = ∩n∈NCn.) Since C ⊆ Cn, y ∈ Cn, so y ∈ I for one of the length 1/3n

closed intervals I ⊆ Cn. But the endpoints of I are both in C. Let x be the
left end-point of I, unless y is that endpoint, in which case, let x be the right
endpoint. Then |x− y| ≤ 1/3n < ε, x 6= y, and x ∈ C.

(b) This is just because the closure of R\C is R (in the standard topology).
I.e., let c ∈ R be the constant output of f on R\C. Let x ∈ C; we claim that
f(x) = c also. Since C contains no interval of positive length, for all ε > 0
there is y ∈ R\C such that |x− y| < ε and y ∈ R\C. But f(y) = c for all such
y. Since f is continuous and the standard topology comes from a metric, f is
sequentially continuous. So for n ∈ N let yn ∈ R\C, such that yn → x. Then
f(x) = limn→∞ f(yn) = limx→∞ c = c.

5. Let f : [0, 1] → (0, 1]. Prove that there is some n ∈ N such that the set
f−1((1/n, 1]) is uncountable.

Hint:
We have f−1((0, 1]) = [0, 1], which is uncountable. Show that [0, 1] is the union
of the sets f−1((1/n, 1]), n ∈ N, and use this to prove that one of these sets is
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uncountable.

6. Let X be the collection of all polynomial functions with domain [0, 100].
Let τ be the topology on X given by the max-metric on X. Construct a count-
able base for (X, τ) (and prove it is a base).

Hint:
Use the fact that a metric space with a countable dense set D has a countable
base (given by taking open balls with centers x ∈ D and radii ε ∈ Q). And τ
is the topology of a metric on X. To get a countable dense set D, consider the
set of polynomials with rational coefficients. Show this is dense.

7. (a) Prove that in a topological space X, for any A ⊆ X, Cl(A) is the set
of all z ∈ X such that every open neighbourhood U of z is such that U ∩A 6= ∅.

(b) Let f : X → Y be continuous between top spaces. Does it follow that
f−1(Cl(A)) ⊆ Cl(f−1(A)) for every A ⊆ Y ? What if “⊆” is replaced by “⊇”?

(c) Suppose (X, τ) is a top space such that Int(Cl(U)) = U for every U ∈ τ .
Prove that every U in τ is closed (w.r.t. τ). (Hint: argue by contradiction.
Start with an open set U which is not closed, and work with it to to construct
an open set U ′ such that Int(Cl(U1)) 6= U1.)

Hint:
(a) Show that the set of all z satisfying the stated condition is closed, and in
fact the smallest closed set which is a superset of A.

(b) For “⊆”, consider examples in which f : R→ R is constant and A = Q.
For “⊇”, the resulting statement is true: use the fact that A ⊆ Cl(A), and
therefore that f−1(A) ⊆ f−1(Cl(A)), and that by continuity, f−1(Cl(A)) is
closed.

(c) Continuing with the hint given following the statement of the problem,
let U be as there, and note that V = X\Cl(U) is open, so by hypothesis,
Int(Cl(V )) = V . Show that U ∪V ∈ τ , and U ∪V 6= X, but Cl(U ∪V ) = X, so
Int(Cl(U ∪V )) = X, contradicting the fact that Int(Cl(U ∪V )) = U ∪V (which
follows from our hypothesis).

8. Prove that every closed set is sequentially closed in a topological space.

Hint:
Let A be closed and xn ∈ A for each n ∈ N and suppose that the sequence
converges, and x ∈ X is such that x = limn→∞ xn. Prove that x ∈ A: otherwise
U = X\A is open, and x ∈ U , and you can derive a contradiction from the
sequence converging to x but consisting only of points in A.

9. For each n ∈ N, let Dn ⊆ R2 be an open disc, Dn = B(pn, εn), such
that for each n, B(pn+1, 2εn+1) ⊆ Dn, and 0 < εn ≤ 2−n. Prove that ∩n∈NDn

consists of exactly one point. (Hint: we proved a related fact about R.)

Hint:
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The related fact was that given a sequence In, n ∈ N, of closed intervals ⊆ R,
such that I0 = [0, 1] and In+1 ⊆ In, the intersection ∩n∈NIn 6= ∅. Call this fact
(*). (This was while we were discussing uncountability and the Cantor set.)

Show that for each n ∈ N, there is a closed square Sn+1 = In+1 × Jn+1

(where In+1 and Jn+1 are closed intervals ⊆ R each having the same length),
such that Dn+1 ⊆ Sn+1 ⊆ Dn. Prove that ∩n∈NDn = ∩n∈NSn. Prove that
∩n∈NSn is non-empty, either by following the proof of (*), or by applying (*) to
the sequence In, n ∈ N, and to the sequence Jn, n ∈ N (the sides of Sn). Use
the fact that εn → 0 to show that the intersection has at most one point.
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