Midterm 2 Review Problems - Hints / Sketched Solutions
(Note: all solutions, including examples, should be explained, unless indicated otherwise.)

Sketched solutions are not intended to be full proofs; you should give full proofs on the test.

1. [With correction to τ and τ^{\prime}; both were omitting the empty set originally.] Let $X=\{0,1,2,3\}$ and $Y=\{0,1,2\}$. Let $\tau=\{\emptyset,\{0\},\{0,1\},\{0,1,2,3\}\}$ and let $\tau^{\prime}=\{\emptyset,\{0\},\{0,1\},\{0,2\},\{0,1,2\}\}$. (Then (X, τ) and $\left(Y, \tau^{\prime}\right)$ are both topological spaces; you may assume this.)

Give an example of a function $f: X \rightarrow Y$ which is not continuous (with respect to these topologies).

Hint:

You need to define a function such that for some $U \in \tau^{\prime}$, you have $f^{-1}(U) \notin \tau$. This can be arranged either with $U=\{0,1\}$, or with $U=\{0,2\}$.
2. Prove that if \mathfrak{b} is a base for a topology τ on Y, and $f: X \rightarrow Y$, then

$$
\left\{f^{-1}(U) \mid U \in \mathfrak{b}\right\}
$$

is a base for a topology on τ^{\prime} on X. Show, moreover, that f is continuous from $\left(X, \tau^{\prime}\right)$ to (Y, τ), and in fact that τ^{\prime} is the smallest topology with this property. (I.e., if $\tau^{\prime \prime}$ is another topology on X such that f is continuous from $\left(X, \tau^{\prime \prime}\right)$ to (Y, τ), then $\tau^{\prime} \subseteq \tau^{\prime \prime}$.)

Hint:

Use the proposition proved in class, i.e. that a collection \mathfrak{b}_{1} of subsets of X_{1} is a base for a topology on X_{1} iff: $\cup \mathfrak{b}_{1}=X_{1}$ and for all $U_{1}, U_{2} \in \mathfrak{b}_{1}$, we have that $U_{1} \cap U_{2}$ can be formed as the union of some elements from \mathfrak{b}_{1}. I discussed the minimality property of τ^{\prime} in class.
3. Let X be the collection of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$. For each $n \in \mathbb{N}$, and each function $\sigma:\{0,1, \ldots, n-1\} \rightarrow \mathbb{N}$, let $N_{\sigma} \subseteq X$ be the collection of functions

$$
N_{\sigma}=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \sigma=f \upharpoonright\{0,1 \ldots, n-1\}\} .
$$

So, for example, if σ_{0} is the function with domain $\{0,1,2\}$, such that $\sigma_{0}(0)=3$, $\sigma_{0}(1)=5$ and $\sigma_{0}(2)=0$, then

$$
\begin{gathered}
N_{\sigma_{0}}=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \sigma_{0}=f \upharpoonright\{0,1,2\}\right\} \\
=\{f: \mathbb{N} \rightarrow \mathbb{N} \mid f(0)=3, f(1)=5, f(2)=0 .\} .
\end{gathered}
$$

Let \mathfrak{b} be the collection of all sets of the form N_{σ} (ranging over all σ as above).
(a) Show that \mathfrak{b} is a base, for a topology τ on X.
(b) Let C be the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that 5 is not in the range of f. Show that C is closed in this topology.
(c) Show that the set of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f(0)=3$ is both open and closed in this topology.
(d) Prove that X is uncountable.
(This topological space is called Baire space.)
Hint:
(a) Use the same proposition as mentioned in the hint for problem 2. As part of this, let $n_{1} \in \mathbb{N}$ and $\sigma_{1}:\left\{0,1, \ldots, n_{1}-1\right\} \rightarrow \mathbb{N}$ and similarly for n_{2} and σ_{2}. You must show that $U=N_{\sigma_{1}} \cap N_{\sigma_{2}}$ is the union of some elements of \mathfrak{b}, i.e. the union of some collection of N_{σ} 's. Show that in fact, either $U=\emptyset$, or $U=N_{\sigma_{1}}$, or $U=N_{\sigma_{2}}$; and that this implies the former statement. Which of these cases attains depends on whether $n_{1} \leq n_{2}$ or $n_{1}>n_{2}$, and whether $\sigma_{1} \upharpoonright \min \left(n_{1}, n_{2}\right)=\sigma_{2} \upharpoonright \min \left(n_{1}, n_{2}\right)$.
(b) The complement of C is the set of all f such that $5 \in \operatorname{rg}(f)$. But $5 \in \operatorname{rg}(f)$ iff there's $n \in \mathbb{N}$ such that $f(n)=5$, which is iff there's $k \in \mathbb{N}$ such that $5 \in \operatorname{rg}(\sigma)$, where $\sigma=f \upharpoonright\{0,1, \ldots, k-1\}$, which is iff $f \in N_{\sigma}$ for some σ with $5 \in \operatorname{rg}(\sigma)$. The latter condition describes an open set.
(c) The proof of openness is similar to (b); in fact it's easier, as $f(0)=3$ iff $f \in N_{\sigma}$, where $\sigma:\{0\} \mathbb{N}$ is the function such that $\sigma(0)=3$. For closedness, note that $f(0) \neq 3$ iff $f(0)=k$ for some $k \in \mathbb{N} \backslash\{3\}$, which is iff $f \in N_{\sigma}$ for some $\sigma:\{0\} \rightarrow \mathbb{N}$, with $\sigma(0)=k$, some $k \in \mathbb{N} \backslash\{3\}$.
(d) Let $\left\langle f_{n}\right\rangle_{n \in \mathbb{N}}$ be an enumeration of functions in X. Construct a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that $g \neq f_{n}$ for each n, by diagonalizing: define $g(n)$ such that $g(n) \neq f_{n}(n)$ for each n.
4. Let C be the Cantor set. (a) Let $x \in C$ and $\varepsilon>0$. Show that there is some $y \in C$ such that $y \neq x$, but $|y-x|<\varepsilon$. (b) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, and f is constant on $\mathbb{R} \backslash C$. Prove that f is constant.

Hint:

(a) (I reversed the roles of the variables x, y.) Let $y \in C$ and $\varepsilon>0$. Let $n \in \mathbb{N}$ be large enough that $1 / 3^{n}<\varepsilon$. Recall that C_{n} is the union of disjoint closed intervals of length $1 / 3^{n}$. (Here $C_{n}, n \in \mathbb{N}$, are the sets used to construct C, by $C=\cap_{n \in \mathbb{N}} C_{n}$.) Since $C \subseteq C_{n}, y \in C_{n}$, so $y \in I$ for one of the length $1 / 3^{n}$ closed intervals $I \subseteq C_{n}$. But the endpoints of I are both in C. Let x be the left end-point of I, unless y is that endpoint, in which case, let x be the right endpoint. Then $|x-y| \leq 1 / 3^{n}<\varepsilon, x \neq y$, and $x \in C$.
(b) This is just because the closure of $\mathbb{R} \backslash C$ is \mathbb{R} (in the standard topology). I.e., let $c \in \mathbb{R}$ be the constant output of f on $\mathbb{R} \backslash C$. Let $x \in C$; we claim that $f(x)=c$ also. Since C contains no interval of positive length, for all $\varepsilon>0$ there is $y \in \mathbb{R} \backslash C$ such that $|x-y|<\varepsilon$ and $y \in \mathbb{R} \backslash C$. But $f(y)=c$ for all such y. Since f is continuous and the standard topology comes from a metric, f is sequentially continuous. So for $n \in \mathbb{N}$ let $y_{n} \in \mathbb{R} \backslash C$, such that $y_{n} \rightarrow x$. Then $f(x)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)=\lim _{x \rightarrow \infty} c=c$.
5. Let $f:[0,1] \rightarrow(0,1]$. Prove that there is some $n \in \mathbb{N}$ such that the set $f^{-1}((1 / n, 1])$ is uncountable.

Hint:
We have $f^{-1}((0,1])=[0,1]$, which is uncountable. Show that $[0,1]$ is the union of the sets $f^{-1}((1 / n, 1]), n \in \mathbb{N}$, and use this to prove that one of these sets is
uncountable.
6. Let X be the collection of all polynomial functions with domain $[0,100]$. Let τ be the topology on X given by the max-metric on X. Construct a countable base for (X, τ) (and prove it is a base).

Hint:

Use the fact that a metric space with a countable dense set D has a countable base (given by taking open balls with centers $x \in D$ and radii $\varepsilon \in \mathbb{Q}$). And τ is the topology of a metric on X. To get a countable dense set D, consider the set of polynomials with rational coefficients. Show this is dense.
7. (a) Prove that in a topological space X, for any $A \subseteq X, \mathrm{Cl}(A)$ is the set of all $z \in X$ such that every open neighbourhood U of z is such that $U \cap A \neq \emptyset$.
(b) Let $f: X \rightarrow Y$ be continuous between top spaces. Does it follow that $f^{-1}(\mathrm{Cl}(A)) \subseteq \mathrm{Cl}\left(f^{-1}(A)\right)$ for every $A \subseteq Y$? What if " \subseteq " is replaced by " \supseteq "?
(c) Suppose (X, τ) is a top space such that $\operatorname{Int}(\mathrm{Cl}(U))=U$ for every $U \in \tau$. Prove that every U in τ is closed (w.r.t. τ). (Hint: argue by contradiction. Start with an open set U which is not closed, and work with it to to construct an open set U^{\prime} such that $\operatorname{Int}\left(\mathrm{Cl}\left(U_{1}\right)\right) \neq U_{1}$.)

Hint:
(a) Show that the set of all z satisfying the stated condition is closed, and in fact the smallest closed set which is a superset of A.
(b) For " \subseteq ", consider examples in which $f: \mathbb{R} \rightarrow \mathbb{R}$ is constant and $A=\mathbb{Q}$. For " \supseteq ", the resulting statement is true: use the fact that $A \subseteq \mathrm{Cl}(A)$, and therefore that $f^{-1}(A) \subseteq f^{-1}(\mathrm{Cl}(A))$, and that by continuity, $f^{-1}(\mathrm{Cl}(A))$ is closed.
(c) Continuing with the hint given following the statement of the problem, let U be as there, and note that $V=X \backslash \mathrm{Cl}(U)$ is open, so by hypothesis, $\operatorname{Int}(\mathrm{Cl}(V))=V$. Show that $U \cup V \in \tau$, and $U \cup V \neq X$, but $\mathrm{Cl}(U \cup V)=X$, so $\operatorname{Int}(\mathrm{Cl}(U \cup V))=X$, contradicting the fact that $\operatorname{Int}(\mathrm{Cl}(U \cup V))=U \cup V$ (which follows from our hypothesis).
8. Prove that every closed set is sequentially closed in a topological space.

Hint:

Let A be closed and $x_{n} \in A$ for each $n \in \mathbb{N}$ and suppose that the sequence converges, and $x \in X$ is such that $x=\lim _{n \rightarrow \infty} x_{n}$. Prove that $x \in A$: otherwise $U=X \backslash A$ is open, and $x \in U$, and you can derive a contradiction from the sequence converging to x but consisting only of points in A.
9. For each $n \in \mathbb{N}$, let $D_{n} \subseteq \mathbb{R}^{2}$ be an open disc, $D_{n}=\mathcal{B}\left(p_{n}, \varepsilon_{n}\right)$, such that for each $n, \mathcal{B}\left(p_{n+1}, 2 \varepsilon_{n+1}\right) \subseteq D_{n}$, and $0<\varepsilon_{n} \leq 2^{-n}$. Prove that $\cap_{n \in \mathbb{N}} D_{n}$ consists of exactly one point. (Hint: we proved a related fact about \mathbb{R}.)

Hint:

The related fact was that given a sequence $I_{n}, n \in \mathbb{N}$, of closed intervals $\subseteq \mathbb{R}$, such that $I_{0}=[0,1]$ and $I_{n+1} \subseteq I_{n}$, the intersection $\cap_{n \in \mathbb{N}} I_{n} \neq \emptyset$. Call this fact $(*)$. (This was while we were discussing uncountability and the Cantor set.)

Show that for each $n \in \mathbb{N}$, there is a closed square $S_{n+1}=I_{n+1} \times J_{n+1}$ (where I_{n+1} and J_{n+1} are closed intervals $\subseteq \mathbb{R}$ each having the same length), such that $D_{n+1} \subseteq S_{n+1} \subseteq D_{n}$. Prove that $\cap_{n \in \mathbb{N}} D_{n}=\cap_{n \in \mathbb{N}} S_{n}$. Prove that $\cap_{n \in \mathbb{N}} S_{n}$ is non-empty, either by following the proof of (*), or by applying $\left(^{*}\right)$ to the sequence $I_{n}, n \in \mathbb{N}$, and to the sequence $J_{n}, n \in \mathbb{N}$ (the sides of S_{n}). Use the fact that $\varepsilon_{n} \rightarrow 0$ to show that the intersection has at most one point.

