Midterm 2

Instructions:

Section 1 (problems $1,2,3,4,5$) [10 points each]
5600 students: Complete any four of problems of $1,2,3,4,5$.
4500 students: Complete one of problems 1,2 ; and complete two problems from $3,4,5$. (So three total.)
Extra problems may be completed.
Section 2 (problems 6,7,8) [20 points each]
All students: complete any two of problems $6,7,8$.
(Note some parts are not required for 4500 students, but may be completed for extra credit.)

1. Let $X=\{0,1,2,3,4\}$.
(a) Give an example of a topology τ on X, such that $\{0,1\}$ is closed in the topological space (X, τ).
(b) Let X be as above and $Y=\{5,6,7\}$. Let

$$
\tau_{X}=\{\emptyset, X,\{0,1,2\},\{3,4\}\}
$$

and

$$
\tau_{Y}=\{\emptyset, Y,\{5\},\{5,6\}\}
$$

(Then $\left(X, \tau_{X}\right)$ and $\left(Y, \tau_{Y}\right)$ are topological spaces; you may assume this.)
Let $f: X \rightarrow Y$ be a continuous function such that $f(0)=5$. Show that $f(2)=5$ also. What values could $f(3)$ be?
(Here f is continuous with respect to the topologies τ_{X}, τ_{Y}.)
Solution. (a) For $\{0,1\}$ to be closed, we need precisely that $X \backslash\{0,1\}$ is open, i.e. $\{2,3,4\}$ is open. So we need $\{2,3,4\} \in \tau$. We also need $\emptyset, X \in \tau$ for τ to be a topology. Note that

$$
\tau=\{\emptyset, X,\{2,3,4\}\}
$$

is a topology on X, and since $\{2,3,4\} \in \tau,\{0,1\}$ is closed w.r.t. τ, as required.
(b) Since $f(0)=5$, we have $0 \in f^{-1}(\{5\})$. Since $\{5\} \in \tau_{Y}$ and f is continuous, we have $f^{-1}(\{5\}) \in \tau_{X}$. The only elements $U \in \tau_{x}$ such that $0 \in U$ are $U=\{0,1,2\}$ and $U=X$. So either $f^{-1}(\{5\})=\{0,1,2\}$ or $f^{-1}(\{5\})=X$. But $2 \in\{0,1,2\}$ and $2 \in X$, so either way, $2 \in f^{-1}(\{5\})$. So $f(2)=5$.
$f(3)$ can be 5,6 , or 7 . For consider the following functions:
$f_{1}: X \rightarrow Y$, where $f_{1}(x)=5$ for all x. Since f_{1} is constant, f_{1} is continuous, and $f_{1}(0)=5$ and $f_{1}(3)=5$.
$f_{2}: X \rightarrow Y$, where $f_{2}(x)=5$ for $x \in\{0,1,2\}$, and $f_{2}(3)=f_{2}(4)=6$. Then $f_{2}^{-1}(\{5\})=\{0,1,2\}$ and $f_{2}^{-1}(\{5,6\})=X$, both of which are in τ_{X}. (And $f_{2}^{-1}(\emptyset)=\emptyset$ and $f_{2}^{-1}(Y)=X$ is automatic since $f_{2}: X \rightarrow Y$). So f_{2} is continuous and $f_{2}(0)=5$ and $f_{2}(3)=6$.
$f_{3}: X \rightarrow Y$, where $f_{2}(x)=5$ for $x \in\{0,1,2\}$, and $f_{3}(3)=f_{3}(4)=7$. Then $f_{3}^{-1}(\{5\})=,\{0,1,2\}$ and $f_{3}^{-1}(\{5,6\})=\{0,1,2\}$, so like in the previous case, f_{3} is continuous, and $f_{3}(0)=5$ and $f_{3}(3)=7$.

From what we know, f might be any of these three functions, so $f(3)$ could be 5,6 or 7 . (It can't be anything else as $Y=\{5,6,7\}$.) (In fact, the functions f_{1}, f_{2}, f_{3} are the only continuous functions $f: X \rightarrow Y$ such that $f(0)=5$.)
2. Let X be the set of all finite sets of non-negative integers, i.e.

$$
X=\{A \mid A \subseteq \mathbb{N} \& A \text { is finite }\}
$$

Show that X is countable.
Solution. Since a countable union of countable sets is countable, it suffices to show that

$$
X=\bigcup_{n=0}^{\infty} X_{n}
$$

for some sequence $\left\langle X_{n}\right\rangle_{n \in \mathbb{N}}$ of countable sets X_{n}.
So note that for each $A \in X$, since A is finite, A is bounded in \mathbb{N}. So there is some $n \in \mathbb{N}$ such that $A \subseteq\{0,1, \ldots, n-1\}$, i.e. $A \in \mathcal{P}(\{0,1, \ldots, n-1\})$. So let

$$
X_{n}=\mathcal{P}(\{0,1, \ldots, n-1\})
$$

Certainly $X_{n} \subseteq X$. This combined with the above remarks show that

$$
X=\bigcup_{n=0}^{\infty} X_{n}
$$

And X_{n} is countable: In fact since $\{0,1, \ldots, n-1\}$ is finite, so is X_{n}, because in fact, X_{n} has exactly 2^{n} elements. (I.e., there's a bijection between X_{n} and the finite set $\left\{0,1,2, \ldots, 2^{n}-1\right\}$.) Since X_{n} is finite, it's countable, as required.
(Addendum: Proof that X_{n} has exactly 2^{n} elements: Let F_{n} be the set of functions $f:\{0,1, \ldots, n-1\} \rightarrow\{0,1\}$. There's a natural bijection π from F_{n} to $\mathcal{P}(\{0,1, \ldots, n-1\})$: given $f \in F_{n}$, let $\pi(f)$ be the set A such that f is its characteristic function. I.e., for $i<n, i \in A$ iff $f(i)=1$. This is a bijection: it's onto since given $A \subseteq\{0,1, \ldots, n-1\}$, just let $f_{A}:\{0,1, \ldots, n-1\} \rightarrow\{0,1\}$ be the characteristic function of A, i.e. $f(i)=1$ iff $i \in A$ (so $f(i)=0$ iff $i \notin A$). Then $\pi\left(f_{A}\right)=A$. And it's 1 to 1: given $f \neq g$, we have $f(i) \neq g(i)$ for some $i<n$, so for such i, we have $i \in \pi(f)$ iff $i \notin \pi(g)$, so $\pi(f) \neq \pi(g)$.

Therefore the number of elements in X_{n} is the same as the number of elements in F_{n}, so it suffices to show that the latter is 2^{n}.

By induction: F_{0} has just one element (the empty function, i.e. the function with empty domain), so it has 2^{0} elements. Suppose F_{n} has 2^{n} elements. Now there is a bijection σ from F_{n+1} to $\{0,1\} \times F_{n}$: just let $\sigma(f)=(f(n), f \upharpoonright$ $\{0,1, \ldots, n-1\}$). For σ is $1-1$ as given $f \neq g$, we have $f(i) \neq g(i)$ for some $i<n$, so either $f(n) \nsupseteq g(n)$, or $f \upharpoonright\{0,1 \ldots, n-1\} \neq g \upharpoonright\{0,1, \ldots, n-1\}$, and therefore $\sigma(f) \neq \sigma(g)$. And σ is onto as given $\left(j, f^{\prime}\right) \in\{0,1\} \times F_{n}$, the function $f \in F_{n+1}$, defined by $f(n)=j$ and $f(m)=f^{\prime}(m)$ for $m<n$, is such that $\sigma(f)=\left(j, f^{\prime}\right)$.

But now by induction there are 2^{n} elements in F_{n}. Therefore there are 2^{n+1} elements in $\{0,1\} \times F_{n}$, since this set is essentially 2 disjoint copies of F_{n}. (I.e., if $\rho: F_{n} \rightarrow\left\{0,1,2, \ldots, 2^{n}-1\right\}$ is a bijection, then $\rho^{\prime}:\{0,1\} \times F_{n} \rightarrow$ $\left\{0,1, \ldots, 2^{n+1}-1\right\}$ is a bijection, where $\rho^{\prime}(j, f)=j * 2^{n}+\rho(f)$.) Since F_{n+1} is bijectable with $\{0,1\} \times F_{n}, F_{n+1}$ also has 2^{n+1}, elements. This completes the induction.)

In the true or false questions, if you're giving a counterexample, you don't need to prove that it is a counterexample, but state it precisely. If you know the name of a counterexample, you can just give its name; otherwise define it.
3. True or false: "For every uncountable closed set $D \subseteq \mathbb{R}$, there's $a<b \in \mathbb{R}$ such that $[a, b] \subseteq D$ ". (State "true" or "false" and either explain briefly or state a counterexample.)

Solution. False. The Cantor set is a counterexample.
4. True or false: "Let $(X, \tau),(Y, \sigma)$ be topological spaces and $f: X \rightarrow Y$. Suppose for every $V \subseteq Y$, we have $f^{-1}(\operatorname{Int}(V))=\operatorname{Int}\left(f^{-1}(V)\right)$. Then f is continuous."
(Note: Here $\operatorname{Int}(A)$ is the interior of the set A. The interior $\operatorname{Int}(V)$ is with respect to (Y, σ), and the interior $\operatorname{Int}\left(f^{-1}(V)\right)$ is with respect to (X, τ).)
(State "true" or "false" and either explain briefly or state a counterexample.)
Solution. True. Let $V \subseteq Y$ such that $V \in \sigma$. Then $\operatorname{Int}(V)=V$ (since $\operatorname{Int}(V)$ is the largest open subset of V by definition). So by hypothesis, we have $f^{-1}(V)=f^{-1}(\operatorname{Int}(V))=\operatorname{Int}\left(f^{-1}(V)\right)$, and the latter is open since $\operatorname{Int}(U)$ is open for any U, by definition of Int. So we have shown that $f^{-1}(V) \in \tau$ for all $V \in \sigma$, i.e. f is continuous.
5. True or false: "Let (X, τ) be a topological space and $\left\langle x_{i}\right\rangle_{i \in \mathbb{N}}$ a sequence of points such that $x_{i} \in X$ for each $i \in \mathbb{N}$. Then there is at most one $x \in X$ such that $x_{i} \rightarrow x$ as $i \rightarrow \infty$."
(State "true" or "false" and either explain briefly or state a counterexample.)
Solution. False. E.g. if $X=\{0,1\}$ and τ is the trivial topology on X, then every sequence in X converges to both 0 and 1, and so the constant sequence $x_{n}=0$ for all $n \in \mathbb{N}$ is such that $x_{n} \rightarrow 0$ and $x_{n} \rightarrow 1$.

Also the naturals $X=\mathbb{N}$ with the cofinite topology $\tau_{\text {cof }}$, and the sequence $x_{n}=n$, is such that $x_{n} \rightarrow k$ for every $k \in \mathbb{N}$.

Section 2. Complete any two of problems 6, 7, 8.
6. Let \mathfrak{b} be the set of all left-closed, right-open intervals $\subseteq \mathbb{R}$, i.e.,

$$
\mathfrak{b}=\{[a, b) \mid a, b \in \mathbb{R} \& a<b\}
$$

(a) Show that \mathfrak{b} is a base, for some topology on \mathbb{R}. (Let τ be this topology for parts (b) and (c) below.)
(b) Let $\tau_{\text {std }}$ be the standard topology on \mathbb{R}. Show that $\tau \nsubseteq \tau_{\text {std }}$.
(c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the identity function $f(x)=x$. Show that f is not continuous as a function $\left(\mathbb{R}, \tau_{\text {std }}\right) \rightarrow(\mathbb{R}, \tau)$.

Part (d) is not required for 4500 students (but may be completed for extra credit).
(d) Compute the closure of the interval $I=(0,1)$, i.e. $\mathrm{Cl}(I)$, with respect to τ.

Solution.

(a) Note that $\bigcup \mathfrak{b}=\mathbb{R}$ since every $U \in \mathfrak{b}$ is of the form $[a, b) \subseteq \mathbb{R}$, and for each $x \in \mathbb{R}, x \in[x, x+1)$ and $[x, x+1) \in \mathfrak{b}$. So if \mathfrak{b} is a base at all, then \mathfrak{b} is a base for a topology on $X=\mathbb{R}$.

To see \mathfrak{b} is a base, we use the characterization from lectures that: \mathfrak{b} is a base iff for all $U, V \in \mathfrak{b}$, we have $U \cap V$ is a union of some set of elements of \mathfrak{b}, i.e. $U \cap V=\bigcup C$ for some $C \subseteq \mathfrak{b}$.

So let $U=[a, b) \in \mathfrak{b}$ and $V=[c, d) \in \mathfrak{b}$. Note that

$$
[a, b) \cap[c, d)=[\max (a, c), \min (b, d))
$$

(For the left side is just the set of all $x \in \mathbb{R}$ such that $x \geq a$ and $x<b$ and $x \geq c$ and $x<d$, which is equivalent to saying $x \geq \max (a, c)$ and $x<\min (b, d)$.)

Moreover, the latter set is itself of the form $I=[e, f)$ (with $e=\max (a, c)$ and $f=\min (b, d))$, so $I \in \mathfrak{b}$. Therefore $U \cap V=I$ is a union of elements of \mathfrak{b} (in fact $I=\bigcup C$ where $C=\{I\}$), as required.
(b) Note that $[0,1) \in \tau$, since $[0,1) \in \mathfrak{b} \subseteq \tau$. But $[0,1) \notin \tau_{\text {std }}$ (since at the point $x=0$, there's no $\varepsilon>0$ such that $(x-\varepsilon, x+\varepsilon) \subseteq[0,1))$. Therefore $\tau \nsubseteq \tau_{\mathrm{std}}$.
(c) To show that f is not continuous from $\left(X, \tau_{\text {std }}\right)$ to (X, τ), we need to find a set $U \in \tau$ such that $f^{-1}(U) \notin \tau_{\text {std }}$.

Let $U \subseteq \mathbb{R}$. Then note: $\left.f^{-1}\right)(U)=U$. For given $x \in \mathbb{R}, x \in f^{-1}(U)$ iff $f(x) \in U$ iff $x \in U$, the latter since $f(x)=x$. Therefore in particular, $f^{-1}([0,1))=[0,1)$. But as in (b), we have $[0,1) \in \tau$, but $[0,1) \notin \tau_{\text {std }}$, so $f^{-1}([0,1))=[0,1) \notin \tau_{\text {std }}$. Therefore $U=[0,1)$ is as required. So f is not continuous.
(d) $\mathrm{Cl}((0,1))$ is the smallest closed set with $(0,1)$ a subset. So $(0,1) \subseteq$ $\mathrm{Cl}((0,1))$. If $(0,1)$ itself is closed then $\mathrm{Cl}((0,1))=(0,1)$. The complement of $(0,1)$ is $V=(-\infty, 0] \cup[1, \infty)$. But V is not open, since $0 \in V$, but there is no $W \in \mathfrak{b}$ such that $0 \in W \subseteq V$. For if $[a, b) \in \mathfrak{b}$ and $0 \in[a, b)$, then $a \leq 0<b$, so $[a, b) \cap(0,1) \neq \emptyset$, so $[a, b) \nsubseteq V$. So $(0,1)$ is not closed, so $(0,1)$ is a proper subset of $\mathrm{Cl}((0,1))$.

The complements of closed sets extending $(0,1)$ are open sets contained in $\mathbb{R} \backslash(0,1)$, i.e. contained in $(-\infty, 0] \cup[1, \infty)$. Note that $[1, \infty) \in \tau$ since $[1, \infty)=\cup_{n \in \mathbb{N}}[1, n)$, and each $[1, n) \in \mathfrak{b}$. Also note that $(-\infty, 0) \in \tau$ since $(-\infty, 0)=\cup_{n \in \mathbb{N}}[-n, 0)$ and each $[-n, 0) \in \mathfrak{b}$. So $(-\infty, 0) \cup[1, \infty) \in \tau$. Therefore its complement, $[0,1)$, is closed.

Since $[0,1)$ is closed but $(0,1)$ is not closed, and $[0,1)=(0,1) \cup\{0\}$, i.e. there's just one more point added, we have that $[0,1)$ must be the smallest closed set extending $(0,1)$. So $\mathrm{Cl}((0,1))=[0,1)$.

Alternative: use the characterization of closure given in one of the review problems. This tells us that $\operatorname{Cl}((0,1))$ is the set of all $x \in \mathbb{R}$ such that for all $U \in \tau$ with $x \in U$, we have $U \cap(0,1) \neq \emptyset$. Certainly for all $x \in(0,1)$, if $U \in \tau$ and $x \in U$ then $x \in U \cap(0,1)$, so $U \cap(0,1) \neq \emptyset$. So $(0,1) \subseteq \mathrm{Cl}((0,1))$. If $x \geq 1$ then note that $[1, x+1$) is an element of \mathfrak{b}, so an element of τ, and $[1, x+1) \cap U=\emptyset$. Therefore $x \notin \mathrm{Cl}((0,1))$. Now let $x \leq 0$. If $x<0$, then $U=[x-1, x+|x / 2|)$ is in \mathfrak{b} and $U \cap(0,1)=\emptyset$, so again $x \notin \mathrm{Cl}((0,1))$. If $x=0$, then if $U \in \tau$ and $x \in U$, then there is some $W \in \mathfrak{b}$ such that $x=0 \in W \subseteq U$. So we have some $a, b \in \mathbb{R}$ and $x=0 \in[a, b) \subseteq U$. But then $a \leq 0<b$, so $[a, b) \cap(0,1) \neq \emptyset\left(\right.$ since $\frac{1}{2} \min (1, b)$ is in this intersection). So $U \cap(0,1) \neq \emptyset$. This was true for an arbitrary $U \in \tau$ with $x \in U$. So $x=0 \in \operatorname{Cl}((0,1))$. So overall, we have $(0,1) \subseteq \mathrm{Cl}((0,1)), 0 \in \mathrm{Cl}((0,1))$, and $[1, \infty)$ avoids $\mathrm{Cl}((0,1))$, and $(-\infty, 0)$ avoids $\mathrm{Cl}((0,1))$. So $\mathrm{Cl}((0,1))=[0,1)$.
7. Let C be the Cantor set.
(a) Explain briefly why there's an irrational number in C.
(b) Let $A \subseteq \mathbb{R}$ be a countable set. Give a construction/definition of a specific number in $C \backslash A$. (Just give the construction. It should identify one specific number. You don't have to prove that it's in $C \backslash A$.)
(Note: Here by "one specific number" I mean that given the set A, and given certain choices made in the proof/construction, exactly one number is produced. Which number that it is will depend in general on A and the choices made.)

Solution.

(a) C is uncountable but the rationals \mathbb{Q} are countable. Any subset of a countable set is countable, so C cannot be a subset of \mathbb{Q}. So C has an irrational element.
(b) Since A is countable, we may fix $f: \mathbb{N} \rightarrow A$ a surjection. Let C_{n} be the usual sets defined to produce the Cantor set, i.e. $C=\cap_{n \in \mathbb{N}} C_{n}$, and $C_{0}=[0,1]$, $C_{1}=[0,1 / 3] \cup[2 / 3,1]$, and so on, with C_{n} a union of 2^{n} disjoint closed intervals each of length $1 / 3^{n}$. (So, as defined in detail in class.)

Index the subintervals of the C_{n} 's as I did in class using finite sequences σ of 0 's and 2 's of length n, i.e. with $\left\rangle\right.$ the empty sequence, $I_{\langle \rangle}=[0,1]$, then $I_{\langle 0\rangle}=[0,1 / 3], I_{\langle 1\rangle}=[2 / 3,1], I_{\langle 00\rangle}=[0,1 / 9], I_{\langle 01\rangle}=[2 / 9,3 / 9=1 / 3]$, and so on.

Now define an infinite sequence σ of 0 's and 2's as follows. We also define a nested sequence of intervals J_{n} with J_{n} of length $1 / 3^{n}$; it will be one of the 2^{n} subintervals of C_{n}. At the $0^{\text {th }}$ stage, the very beginning, we start with $J_{0}=[0,1]$, and none of the sequence σ defined.

We first define $\sigma(0)$ and J_{1}. If $f(0) \in I_{\langle 0\rangle}$ then we set $\sigma(0)=2$; otherwise $f(0) \notin I_{\langle 0\rangle}$ and we set $\sigma(0)=0$. Now that we have defined $\sigma(0)$ we also set $J_{1}=I_{\langle\sigma(0)\rangle}$. So note that $f(0) \notin J_{1}$.

We are now up to the beginning of the $1^{\text {th }}$ stage.
From now on we maintain the following inductive hypotheses: at the beginning of stage n we have already defined integers $\sigma(0), \ldots, \sigma(n-1)$, and intervals J_{0}, \ldots, J_{n}, such that for each $i \neq n, J_{i}=I_{\langle\sigma(0), \ldots, \sigma(i-1)\rangle}$, (so therefore $J_{i+1} \subseteq J_{i}$ by definition of the I_{σ} 's) and for each $i<n, f(i) \notin J_{i+1}$.
(Note that these hypotheses are indeed true at the beginning of the $1^{\text {th }}$ stage.) So now suppose we're at the beginning of the $n^{\text {th }}$ stage and the inductive hypotheses hold.

We define $\sigma(n)$ as follows: if $f(n) \in I_{\langle\sigma(0), \ldots, \sigma(n-1), 0\rangle}$ then set $\sigma(n)=2$; otherwise set $\sigma(n)=0$. Then set $J_{n+1}=I_{\langle\sigma(0), \ldots, \sigma(n)\rangle}$; note that $f(n) \notin J_{n+1}$. Note that we have attained the inductive hypotheses for the beginning of the $(n+1)^{\text {th }}$ stage.

This completes the definition.
We now claim that the intersection $\cap_{n \in \mathbb{N}} J_{n}$ contains exactly one point x and that $x \in C \backslash A$. So our construction produces this particular point. (Note that which point we construct depends on not just the original set A, but also the particular surjection $f: \mathbb{N} \rightarrow A$ that we used. Given f (and therefore A), there is a uniquely determined point produced.)
(You weren't asked to prove that the construction actually works. But it does because: the closed intervals J_{n} are nested, i.e. $J_{n+1} \subseteq J_{n}$ for all n, and are
bounded in $[0,1]$, so by the lemma proved in class, the intersection $\cap_{n \in \mathbb{N}} J_{n} \neq \emptyset$. The intersection is a subset of the Cantor set C since each $J_{n} \subseteq C_{n}$ - so if $x \in \cap_{n \in \mathbb{N}} J_{n}$ then $x \in J_{n}$ for each n, so $x \in C_{n}$ for each n, so $x \in C$. The intersection consists of at most a singleton since for any n, it is a subset of J_{n}, which has length $1 / 3^{n}$. So if x, y are both in the intersection, then for all $n \in \mathbb{N}$, $x, y \in J_{n}$, so for all $n \in \mathbb{N},|x-y| \leq 1 / 3^{n}$, so in fact $|x-y| \leq 0$, so $x=y$. So the intersection produces a singleton $\{x\} \subseteq C$. And $x \notin A$ since if it was, then $x=f(n)$ for some $n \in \mathbb{N}$ but we ensured that $f(n) \notin J_{n+1}$, but $x \in J_{n+1}$, contradiction.)
8. Let $(X, \tau),\left(X_{1}, \tau_{1}\right)$ and $\left(X_{2}, \tau_{2}\right)$ be topological spaces. Let ρ be the product topology on $X_{1} \times X_{2}$ (given by τ_{1}, τ_{2}).
(a) Let $f_{1}: X \rightarrow X_{1}$ be continuous (with respect to τ and τ_{1}) and $f_{2}: X \rightarrow$ X_{2} continuous (with respect to τ and τ_{2}). Let $g: X \rightarrow X_{1} \times X_{2}$ be the map

$$
g(x)=\left(f_{1}(x), f_{2}(x)\right)
$$

Show that g is continuous (with respect to τ and ρ).
Part (b) is not required for 4500 students (but may be completed for extra credit).
(b) Let $A_{1} \subseteq X_{1}$ and $A_{2} \subseteq X_{2}$. Show that

$$
\mathrm{Cl}\left(A_{1} \times A_{2}\right)=\mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)
$$

(Here $\mathrm{Cl}\left(A_{1} \times A_{2}\right)$ is the closure of $A_{1} \times A_{2}$ with respect to $\rho, \mathrm{Cl}\left(A_{1}\right)$ with respect to τ_{1}, and $\mathrm{Cl}\left(A_{2}\right)$ with respect to τ_{2}). (Partial credit for showing just one direction i.e. \subseteq or \supseteq).

Solution. (a) Let $U \in \rho$. We must show that $g^{-1}(U) \in \tau$. First, we have that

$$
U=\bigcup C=\bigcup_{V \in C} V
$$

for some $C \subseteq \mathfrak{b}$, where \mathfrak{b} is the conventional basis for the product topology. That is, \mathfrak{b} is the set of cross products $U_{1} \times U_{2}$ where $U_{1} \in \tau_{1}$ and $U_{2} \in \tau_{2}$. So C is a collection of some such cross products. Now

$$
\left.g^{-1}(U)=g^{-1}\left(\bigcup_{U_{1} \times U_{2} \in C} U_{1} \times U_{2}\right)\right)=\bigcup_{U_{1} \times U_{2} \in C} g^{-1}\left(U_{1} \times U_{2}\right)
$$

We need to see $g^{-1}(U) \in \tau$, so it suffices to show that $g^{-1}\left(U_{1} \times U_{2}\right) \in \tau$ for each $U_{1} \times U_{2} \in C$, since then the union on the right is also in τ, since unions of elements of τ produce more elements of τ.

Let's in fact show that $g^{-1}\left(U_{1} \times U_{2}\right) \in \mathfrak{b}$ for each $U_{1} \times U_{2} \in \mathfrak{b}$ (this does it as $C \subseteq \mathfrak{b}$). So, we have $U_{1} \in \tau_{1}$ and $U_{2} \in \tau_{2}$. Now

$$
\begin{gathered}
g^{-1}\left(U_{1} \times U_{2}\right)=\left\{x \in X \mid g(x) \in U_{1} \times U_{2}\right\} \\
=\left\{x \in X \mid\left(f_{1}(x), f_{2}(x)\right) \in U_{1} \times U_{2}\right\} \\
=\left\{x \in X \mid f_{1}(x) \in U_{1} \& f_{2}(x) \in U_{2}\right\} \\
=\left\{x \in X \mid f_{1}(x) \in U_{1}\right\} \cap\left\{x \in X \mid f_{2}(x) \in U_{2}\right\} \\
=f_{1}^{-1}\left(U_{1}\right) \cap f_{2}^{-1}\left(U_{2}\right)
\end{gathered}
$$

But f_{1} is continuous from (X, τ) to $\left(X_{1}, \tau_{1}\right)$, and $U_{1} \in \tau_{1}$, so $f_{1}^{-1}\left(U_{1}\right) \in \tau$. Similarly, f_{2} is continuous and $U_{2} \in \tau_{2}$, so $f_{2}^{-1}\left(U_{2}\right) \in \tau$. And τ is closed under finite intersections, so the above intersection is in τ. Therefore $g^{-1}\left(U_{1} \times U_{2}\right) \in \tau$, as required.
(b) I'll do this a couple of ways. The first uses the characterization of the closure given in one of the problems on the review.

By that characterization, we have that "(i) $\left(x_{1}, x_{2}\right) \in \mathrm{Cl}\left(A_{1} \times A_{2}\right)$ " iff "(ii) for every open set U including $\left(x_{1}, x_{2}\right)$, we have $U \cap A_{1} \times A_{2} \neq \emptyset$."

So let $\left(x_{1}, x_{2}\right) \in \mathrm{Cl}\left(A_{1} \times A_{2}\right)$, so (i), and therefore (ii), holds. We want to show that $\left(x_{1}, x_{2}\right) \in \mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$, i.e. that $x_{1} \in \mathrm{Cl}\left(A_{1}\right)$ and $x_{2} \in \mathrm{Cl}\left(A_{2}\right)$. We use the characterization again, so we need to show that for all $U_{1} \in \tau_{1}$, if $x_{1} \in U_{1}$ then $U_{1} \cap A_{1} \neq \emptyset$, and likewise with " 1 " replaced with " 2 ". Let's just show the " 1 " case; the other will then hold by symmetry. So let $U_{1} \in \tau_{1}$ such that $x_{1} \in U_{1}$. Then $U_{1} \times X_{2} \in \rho$, since ρ is the product topology. And $\left(x_{1}, x_{2}\right) \in U_{1} \times X_{2}$. Therefore by (ii), $U_{1} \times X_{2} \cap A_{1} \times A_{2} \neq \emptyset$. So let (a_{1}, a_{2}) be in this non-empty intersection. Since $\left(a_{1}, a_{2}\right) \in U_{1} \times X_{2}$, we have $a_{1} \in U_{1}$, and likewise, $a_{1} \in A_{1}$. Therefore $a_{1} \in U_{1} \cap A_{1}$, so $U_{1} \cap A_{1} \neq \emptyset$, as required. This proves that $x_{1} \in \mathrm{Cl}\left(A_{1}\right)$. As mentioned, the fact that $x_{2} \in \mathrm{Cl}\left(A_{2}\right)$ follows by symmetry.

Now let $\left(x_{1}, x_{2}\right) \in \mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$, i.e. $x_{1} \in \mathrm{Cl}\left(A_{1}\right)$ and $x_{2} \in \mathrm{Cl}\left(A_{2}\right)$. We want to see that $\left(x_{1}, x_{2}\right) \in \operatorname{Cl}\left(A_{1} \times A_{2}\right)$. For this we verify (ii). So let U be an open set including $\left(x_{1}, x_{2}\right)$; we must show $U \cap A_{1} \times A_{2} \neq \emptyset$. Since we're using the product topology there is $U_{1} \in \tau_{1}$ and $U_{2} \in \tau_{2}$ such that $\left(x_{1}, x_{2}\right) \in$ $U_{1} \times U_{2} \subseteq U$. So it suffices to show that $U_{1} \times U_{2} \cap A_{1} \times A_{2} \neq \emptyset$. But since $\left(x_{1}, x_{2}\right) \in U_{1} \times U_{2}$, we have $x_{1} \in U_{1}$ and $x_{2} \in U_{2}$. Since $x_{1} \in \operatorname{Cl}\left(A_{1}\right)$ and $x_{1} \in U_{1} \in \tau_{1}$, we have that $U_{1} \cap A_{1} \neq \emptyset$ (by the characterization of closure again). So let $a_{1} \in U_{1} \cap A_{1}$. Similarly, $U_{2} \cap A_{2} \neq \emptyset$; let a_{2} be in this non-empty set. Then $\left(a_{1}, a_{2}\right) \in U_{1} \times U_{2} \cap\left(A_{1} \times A_{2}\right)$, so the latter set is non-empty, as required.

This completes the proof.

Second method:
First: we show $\mathrm{Cl}\left(A_{1} \times A_{2}\right) \subseteq \mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$.
This follows from the facts that (i) $A_{1} \times A_{2} \subseteq \mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$ and (ii) $\mathrm{Cl}\left(A_{1}\right) \times$ $\mathrm{Cl}\left(A_{2}\right)$ is closed in the product topology and (iii) $\mathrm{Cl}\left(A_{1} \times A_{2}\right)$ is the smallest closed set (closed w.r.t. ρ) which has $A_{1} \times A_{2}$ a subset.

For (i) this is because $A_{1} \subseteq \mathrm{Cl}\left(A_{1}\right)$ and $A_{2} \subseteq \mathrm{Cl}\left(A_{2}\right)$, so if $(x, y) \in A_{1} \times A_{2}$ then $x \in A_{1}$ and $y \in A_{2}$, so $x \in \mathrm{Cl}\left(A_{1}\right)$ and $y \in \mathrm{Cl}\left(A_{2}\right)$, so $(x, y) \in \mathrm{Cl}\left(A_{1}\right) \times$ $\mathrm{Cl}\left(A_{2}\right)$.

For (ii): Let's verify that the product of two closed sets is closed. For note that for any $D_{1} \subseteq X_{1}$ and $D_{2} \subseteq X_{2}$ (not necessarily closed), if $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$ then:

$$
\begin{gathered}
\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2} \backslash\left(D_{1} \times D_{2}\right) \\
\Longleftrightarrow\left(x_{1}, x_{2}\right) \notin D_{1} \times D_{2} \\
\Longleftrightarrow x_{1} \notin D_{1} \text { or } x_{2} \notin D_{2} \\
\Longleftrightarrow x_{1} \in X_{1} \backslash D_{1} \text { or } x_{2} \in X_{2} \backslash D_{2} \\
\Longleftrightarrow\left(x_{1}, x_{2}\right) \in\left(X_{1} \backslash D_{1}\right) \times X_{2} \text { or }\left(x_{1}, x_{2}\right) \in X_{1} \times\left(X_{2} \backslash D_{2}\right)
\end{gathered}
$$

Therefore

$$
X_{1} \times X_{2} \backslash\left(D_{1} \times D_{2}\right)=\left(\left(X_{1} \backslash D_{1}\right) \times X_{2}\right) \cup\left(X_{1} \times\left(X_{2} \backslash D_{2}\right)\right)
$$

Now assume that D_{1}, D_{2} are closed (w.r.t. τ_{1}, τ_{2} respectively). Then $X_{1} \backslash D_{1}$ is in τ_{1}, so $\left(X_{1} \backslash D_{1}\right) \times X_{2}$ is in ρ (the product topology), and likewise $X_{1} \times\left(X_{2} \backslash D_{2}\right)$
is in ρ, so the union of these two sets is also in ρ. So the above calculation shows that $X_{1} \times X_{2} \backslash\left(D_{1} \times D_{2}\right)$ is therefore open, so $D_{1} \times D_{2}$ is closed (still assuming D_{1}, D_{2} are each closed).

Applying this to $D_{1}=\mathrm{Cl}\left(A_{1}\right)$ and $D_{2}=\mathrm{Cl}\left(A_{2}\right)$, we see that $\mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$ is closed w.r.t. ρ.

And (iii) is a standard fact.
Second: $\mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right) \subseteq \mathrm{Cl}\left(A_{1} \times A_{2}\right)$.
I'll instead prove the contrapositive, i.e. that the complement of $\mathrm{Cl}\left(A_{1} \times A_{2}\right)$ is a subset of the complement of $\mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$.
Proof of this: Let $\left(x_{1}, x_{2}\right) \in X_{1} \times X_{2}$ such that $\left(x_{1}, x_{2}\right) \notin \mathrm{Cl}\left(A_{1} \times A_{2}\right)$. Since the latter closure is closed, there's an open set $U \in \rho$ such that $\left(x_{1}, x_{2}\right) \in U$ and $U \cap \mathrm{Cl}\left(A_{1} \times A_{2}\right)=\emptyset$. Therefore $U \cap A_{1} \times A_{2}=\emptyset$. Let $U_{1} \in \tau_{1}$ and $U_{2} \in \tau_{2}$ be such that $\left(x_{1}, x_{2}\right) \in U_{1} \times U_{2} \subseteq U$.

Claim: Either $U_{1} \cap A_{1}=\emptyset$ or $U_{2} \cap A_{2}=\emptyset$.
For otherwise, let $a_{1} \in U_{1} \cap A_{1}$ and $a_{2} \in U_{2} \cap A_{2}$. Then $\left(a_{1}, a_{2}\right) \in U_{1} \times U_{2}$ and $\left(a_{2}, a_{2}\right) \in A_{1} \times A_{2}$, so the intersection of these two sets is non-empty, contradicting that $U \cap A_{1} \times A_{2}=\emptyset$ and $U_{1} \times U_{2} \subseteq U$.

Now if $U_{1} \cap A_{1}=\emptyset$ then $x_{1} \notin \mathrm{Cl}\left(A_{1}\right)$, since $x_{1} \in U_{1}$ and $\mathrm{Cl}\left(A_{1}\right) \subseteq X_{1} \backslash U_{1}$, since $X_{1} \backslash U_{1}$ is closed and contains A_{1} as a subset. Therefore $\left(x_{1}, x_{2}\right) \notin \mathrm{Cl}\left(A_{1}\right) \times$ $\mathrm{Cl}\left(A_{2}\right)$.

Similarly if $U_{2} \cap A_{2}=\emptyset$ then $x_{2} \notin \mathrm{Cl}\left(A_{2}\right)$, so $\left(x_{1}, x_{2}\right) \notin \mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$.
So in either case we have $\left(x_{1}, x_{2}\right) \notin \mathrm{Cl}\left(A_{1}\right) \times \mathrm{Cl}\left(A_{2}\right)$, as required.

