
Midterm 2

Instructions:
Section 1 (problems 1,2,3,4,5) [10 points each]
5600 students: Complete any four of problems of 1,2,3,4,5.
4500 students: Complete one of problems 1,2; and complete two problems from
3,4,5. (So three total.)
Extra problems may be completed.

Section 2 (problems 6,7,8) [20 points each]
All students: complete any two of problems 6,7,8.
(Note some parts are not required for 4500 students, but may be completed for
extra credit.)
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1. Let X = {0, 1, 2, 3, 4}.

(a) Give an example of a topology τ on X, such that {0, 1} is closed in the
topological space (X, τ).

(b) Let X be as above and Y = {5, 6, 7}. Let

τX = {∅, X, {0, 1, 2}, {3, 4}}

and
τY = {∅, Y, {5}, {5, 6}}.

(Then (X, τX) and (Y, τY ) are topological spaces; you may assume this.)
Let f : X → Y be a continuous function such that f(0) = 5. Show that

f(2) = 5 also. What values could f(3) be?
(Here f is continuous with respect to the topologies τX , τY .)
Solution. (a) For {0, 1} to be closed, we need precisely that X\{0, 1} is open,
i.e. {2, 3, 4} is open. So we need {2, 3, 4} ∈ τ . We also need ∅, X ∈ τ for τ to
be a topology. Note that

τ = {∅, X, {2, 3, 4}}

is a topology on X, and since {2, 3, 4} ∈ τ , {0, 1} is closed w.r.t. τ , as required.
(b) Since f(0) = 5, we have 0 ∈ f−1({5}). Since {5} ∈ τY and f is contin-

uous, we have f−1({5}) ∈ τX . The only elements U ∈ τx such that 0 ∈ U are
U = {0, 1, 2} and U = X. So either f−1({5}) = {0, 1, 2} or f−1({5}) = X. But
2 ∈ {0, 1, 2} and 2 ∈ X, so either way, 2 ∈ f−1({5}). So f(2) = 5.

f(3) can be 5, 6, or 7. For consider the following functions:
f1 : X → Y , where f1(x) = 5 for all x. Since f1 is constant, f1 is continuous,

and f1(0) = 5 and f1(3) = 5.
f2 : X → Y , where f2(x) = 5 for x ∈ {0, 1, 2}, and f2(3) = f2(4) = 6.

Then f−12 ({5}) = {0, 1, 2} and f−12 ({5, 6}) = X, both of which are in τX .
(And f−12 (∅) = ∅ and f−12 (Y ) = X is automatic since f2 : X → Y ). So f2 is
continuous and f2(0) = 5 and f2(3) = 6.

f3 : X → Y , where f2(x) = 5 for x ∈ {0, 1, 2}, and f3(3) = f3(4) = 7. Then
f−13 ({5, }) = {0, 1, 2} and f−13 ({5, 6}) = {0, 1, 2}, so like in the previous case,
f3 is continuous, and f3(0) = 5 and f3(3) = 7.

From what we know, f might be any of these three functions, so f(3) could
be 5, 6 or 7. (It can’t be anything else as Y = {5, 6, 7}.) (In fact, the functions
f1, f2, f3 are the only continuous functions f : X → Y such that f(0) = 5.)
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2. Let X be the set of all finite sets of non-negative integers, i.e.

X = {A| A ⊆ N & A is finite}.

Show that X is countable.

Solution. Since a countable union of countable sets is countable, it suffices
to show that

X =

∞⋃
n=0

Xn,

for some sequence 〈Xn〉n∈N of countable sets Xn.
So note that for each A ∈ X, since A is finite, A is bounded in N. So there

is some n ∈ N such that A ⊆ {0, 1, . . . , n− 1}, i.e. A ∈ P({0, 1, . . . , n− 1}). So
let

Xn = P({0, 1, . . . , n− 1}).

Certainly Xn ⊆ X. This combined with the above remarks show that

X =

∞⋃
n=0

Xn.

And Xn is countable: In fact since {0, 1, . . . , n − 1} is finite, so is Xn, because
in fact, Xn has exactly 2n elements. (I.e., there’s a bijection between Xn and
the finite set {0, 1, 2, . . . , 2n−1}.) Since Xn is finite, it’s countable, as required.

(Addendum: Proof that Xn has exactly 2n elements: Let Fn be the set of
functions f : {0, 1, . . . , n − 1} → {0, 1}. There’s a natural bijection π from Fn
to P({0, 1, . . . , n − 1}): given f ∈ Fn, let π(f) be the set A such that f is its
characteristic function. I.e., for i < n, i ∈ A iff f(i) = 1. This is a bijection: it’s
onto since given A ⊆ {0, 1, . . . , n− 1}, just let fA : {0, 1, . . . , n− 1} → {0, 1} be
the characteristic function of A, i.e. f(i) = 1 iff i ∈ A (so f(i) = 0 iff i /∈ A).
Then π(fA) = A. And it’s 1 to 1: given f 6= g, we have f(i) 6= g(i) for some
i < n, so for such i, we have i ∈ π(f) iff i /∈ π(g), so π(f) 6= π(g).

Therefore the number of elements in Xn is the same as the number of ele-
ments in Fn, so it suffices to show that the latter is 2n.

By induction: F0 has just one element (the empty function, i.e. the function
with empty domain), so it has 20 elements. Suppose Fn has 2n elements. Now
there is a bijection σ from Fn+1 to {0, 1} × Fn: just let σ(f) = (f(n), f �
{0, 1, . . . , n − 1}). For σ is 1-1 as given f 6= g, we have f(i) 6= g(i) for some
i < n, so either f(n) � g(n), or f � {0, 1 . . . , n − 1} 6= g � {0, 1, . . . , n − 1}, and
therefore σ(f) 6= σ(g). And σ is onto as given (j, f ′) ∈ {0, 1}×Fn, the function
f ∈ Fn+1, defined by f(n) = j and f(m) = f ′(m) for m < n, is such that
σ(f) = (j, f ′).

But now by induction there are 2n elements in Fn. Therefore there are
2n+1 elements in {0, 1}×Fn, since this set is essentially 2 disjoint copies of Fn.
(I.e., if ρ : Fn → {0, 1, 2, . . . , 2n − 1} is a bijection, then ρ′ : {0, 1} × Fn →
{0, 1, . . . , 2n+1 − 1} is a bijection, where ρ′(j, f) = j ∗ 2n + ρ(f).) Since Fn+1 is
bijectable with {0, 1} × Fn, Fn+1 also has 2n+1, elements. This completes the
induction.)
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In the true or false questions, if you’re giving a counterexample, you don’t
need to prove that it is a counterexample, but state it precisely. If you know
the name of a counterexample, you can just give its name; otherwise define it.

3. True or false: “For every uncountable closed set D ⊆ R, there’s a < b ∈ R
such that [a, b] ⊆ D”. (State “true” or “false” and either explain briefly or state
a counterexample.)

Solution. False. The Cantor set is a counterexample.

4. True or false: “Let (X, τ), (Y, σ) be topological spaces and f : X → Y .
Suppose for every V ⊆ Y , we have f−1(Int(V )) = Int(f−1(V )). Then f is
continuous.”

(Note: Here Int(A) is the interior of the set A. The interior Int(V ) is with
respect to (Y, σ), and the interior Int(f−1(V )) is with respect to (X, τ).)

(State “true” or “false” and either explain briefly or state a counterexample.)

Solution. True. Let V ⊆ Y such that V ∈ σ. Then Int(V ) = V (since
Int(V ) is the largest open subset of V by definition). So by hypothesis, we have
f−1(V ) = f−1(Int(V )) = Int(f−1(V )), and the latter is open since Int(U) is
open for any U , by definition of Int. So we have shown that f−1(V ) ∈ τ for all
V ∈ σ, i.e. f is continuous.

5. True or false: “Let (X, τ) be a topological space and 〈xi〉i∈N a sequence
of points such that xi ∈ X for each i ∈ N. Then there is at most one x ∈ X
such that xi → x as i→∞.”

(State “true” or “false” and either explain briefly or state a counterexample.)

Solution. False. E.g. if X = {0, 1} and τ is the trivial topology on X, then
every sequence in X converges to both 0 and 1, and so the constant sequence
xn = 0 for all n ∈ N is such that xn → 0 and xn → 1.

Also the naturals X = N with the cofinite topology τcof , and the sequence
xn = n, is such that xn → k for every k ∈ N.
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Section 2. Complete any two of problems 6, 7, 8.

6. Let b be the set of all left-closed, right-open intervals ⊆ R, i.e.,

b = {[a, b) | a, b ∈ R & a < b}.

(a) Show that b is a base, for some topology on R. (Let τ be this topology
for parts (b) and (c) below.)

(b) Let τstd be the standard topology on R. Show that τ 6⊆ τstd.

(c) Let f : R → R be the identity function f(x) = x. Show that f is not
continuous as a function (R, τstd)→ (R, τ).

Part (d) is not required for 4500 students (but may be completed for extra
credit).

(d) Compute the closure of the interval I = (0, 1), i.e. Cl(I), with respect
to τ .

Solution.
(a) Note that

⋃
b = R since every U ∈ b is of the form [a, b) ⊆ R, and for each

x ∈ R, x ∈ [x, x+ 1) and [x, x+ 1) ∈ b. So if b is a base at all, then b is a base
for a topology on X = R.

To see b is a base, we use the characterization from lectures that: b is a base
iff for all U, V ∈ b, we have U ∩ V is a union of some set of elements of b, i.e.
U ∩ V =

⋃
C for some C ⊆ b.

So let U = [a, b) ∈ b and V = [c, d) ∈ b. Note that

[a, b) ∩ [c, d) = [max(a, c),min(b, d)).

(For the left side is just the set of all x ∈ R such that x ≥ a and x < b and x ≥ c
and x < d, which is equivalent to saying x ≥ max(a, c) and x < min(b, d).)

Moreover, the latter set is itself of the form I = [e, f) (with e = max(a, c)
and f = min(b, d)), so I ∈ b. Therefore U ∩ V = I is a union of elements of b
(in fact I =

⋃
C where C = {I}), as required.

(b) Note that [0, 1) ∈ τ , since [0, 1) ∈ b ⊆ τ . But [0, 1) /∈ τstd (since at
the point x = 0, there’s no ε > 0 such that (x − ε, x + ε) ⊆ [0, 1)). Therefore
τ 6⊆ τstd.

(c) To show that f is not continuous from (X, τstd) to (X, τ), we need to
find a set U ∈ τ such that f−1(U) /∈ τstd.

Let U ⊆ R. Then note: f−1)(U) = U . For given x ∈ R, x ∈ f−1(U)
iff f(x) ∈ U iff x ∈ U , the latter since f(x) = x. Therefore in particular,
f−1([0, 1)) = [0, 1). But as in (b), we have [0, 1) ∈ τ , but [0, 1) /∈ τstd, so
f−1([0, 1)) = [0, 1) /∈ τstd. Therefore U = [0, 1) is as required. So f is not
continuous.

(d) Cl((0, 1)) is the smallest closed set with (0, 1) a subset. So (0, 1) ⊆
Cl((0, 1)). If (0, 1) itself is closed then Cl((0, 1)) = (0, 1). The complement of
(0, 1) is V = (−∞, 0] ∪ [1,∞). But V is not open, since 0 ∈ V , but there is no
W ∈ b such that 0 ∈ W ⊆ V . For if [a, b) ∈ b and 0 ∈ [a, b), then a ≤ 0 < b,
so [a, b) ∩ (0, 1) 6= ∅, so [a, b) 6⊆ V . So (0, 1) is not closed, so (0, 1) is a proper
subset of Cl((0, 1)).
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The complements of closed sets extending (0, 1) are open sets contained
in R\(0, 1), i.e. contained in (−∞, 0] ∪ [1,∞). Note that [1,∞) ∈ τ since
[1,∞) = ∪n∈N[1, n), and each [1, n) ∈ b. Also note that (−∞, 0) ∈ τ since
(−∞, 0) = ∪n∈N[−n, 0) and each [−n, 0) ∈ b. So (−∞, 0)∪[1,∞) ∈ τ . Therefore
its complement, [0, 1), is closed.

Since [0, 1) is closed but (0, 1) is not closed, and [0, 1) = (0, 1) ∪ {0}, i.e.
there’s just one more point added, we have that [0, 1) must be the smallest
closed set extending (0, 1). So Cl((0, 1)) = [0, 1).

Alternative: use the characterization of closure given in one of the review
problems. This tells us that Cl((0, 1)) is the set of all x ∈ R such that for all
U ∈ τ with x ∈ U , we have U ∩ (0, 1) 6= ∅. Certainly for all x ∈ (0, 1), if
U ∈ τ and x ∈ U then x ∈ U ∩ (0, 1), so U ∩ (0, 1) 6= ∅. So (0, 1) ⊆ Cl((0, 1)).
If x ≥ 1 then note that [1, x + 1) is an element of b, so an element of τ , and
[1, x + 1) ∩ U = ∅. Therefore x /∈ Cl((0, 1)). Now let x ≤ 0. If x < 0, then
U = [x−1, x+ |x/2|) is in b and U ∩ (0, 1) = ∅, so again x /∈ Cl((0, 1)). If x = 0,
then if U ∈ τ and x ∈ U , then there is some W ∈ b such that x = 0 ∈ W ⊆ U .
So we have some a, b ∈ R and x = 0 ∈ [a, b) ⊆ U . But then a ≤ 0 < b, so
[a, b) ∩ (0, 1) 6= ∅ (since 1

2 min(1, b) is in this intersection). So U ∩ (0, 1) 6= ∅.
This was true for an arbitrary U ∈ τ with x ∈ U . So x = 0 ∈ Cl((0, 1)). So
overall, we have (0, 1) ⊆ Cl((0, 1)), 0 ∈ Cl((0, 1)), and [1,∞) avoids Cl((0, 1)),
and (−∞, 0) avoids Cl((0, 1)). So Cl((0, 1)) = [0, 1).
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7. Let C be the Cantor set.
(a) Explain briefly why there’s an irrational number in C.
(b) Let A ⊆ R be a countable set. Give a construction/definition of a

specific number in C\A. (Just give the construction. It should identify one
specific number. You don’t have to prove that it’s in C\A.)

(Note: Here by “one specific number” I mean that given the set A, and given
certain choices made in the proof/construction, exactly one number is produced.
Which number that it is will depend in general on A and the choices made.)

Solution.
(a) C is uncountable but the rationals Q are countable. Any subset of a count-
able set is countable, so C cannot be a subset of Q. So C has an irrational
element.

(b) Since A is countable, we may fix f : N→ A a surjection. Let Cn be the
usual sets defined to produce the Cantor set, i.e. C = ∩n∈NCn, and C0 = [0, 1],
C1 = [0, 1/3]∪ [2/3, 1], and so on, with Cn a union of 2n disjoint closed intervals
each of length 1/3n. (So, as defined in detail in class.)

Index the subintervals of the Cn’s as I did in class using finite sequences σ
of 0’s and 2’s of length n, i.e. with 〈〉 the empty sequence, I〈〉 = [0, 1], then
I〈0〉 = [0, 1/3], I〈1〉 = [2/3, 1], I〈00〉 = [0, 1/9], I〈01〉 = [2/9, 3/9 = 1/3], and so
on.

Now define an infinite sequence σ of 0’s and 2’s as follows. We also define
a nested sequence of intervals Jn with Jn of length 1/3n; it will be one of the
2n subintervals of Cn. At the 0th stage, the very beginning, we start with
J0 = [0, 1], and none of the sequence σ defined.

We first define σ(0) and J1. If f(0) ∈ I〈0〉 then we set σ(0) = 2; otherwise
f(0) /∈ I〈0〉 and we set σ(0) = 0. Now that we have defined σ(0) we also set
J1 = I〈σ(0)〉. So note that f(0) /∈ J1.

We are now up to the beginning of the 1th stage.
From now on we maintain the following inductive hypotheses: at the begin-

ning of stage n we have already defined integers σ(0), . . . , σ(n−1), and intervals
J0, . . . , Jn, such that for each i 6= n, Ji = I〈σ(0),...,σ(i−1)〉, (so therefore Ji+1 ⊆ Ji
by definition of the Iσ’s) and for each i < n, f(i) /∈ Ji+1.

(Note that these hypotheses are indeed true at the beginning of the 1th

stage.) So now suppose we’re at the beginning of the nth stage and the inductive
hypotheses hold.

We define σ(n) as follows: if f(n) ∈ I〈σ(0),...,σ(n−1),0〉 then set σ(n) = 2;
otherwise set σ(n) = 0. Then set Jn+1 = I〈σ(0),...,σ(n)〉; note that f(n) /∈ Jn+1.
Note that we have attained the inductive hypotheses for the beginning of the
(n+ 1)th stage.

This completes the definition.
We now claim that the intersection ∩n∈NJn contains exactly one point x and

that x ∈ C\A. So our construction produces this particular point. (Note that
which point we construct depends on not just the original set A, but also the
particular surjection f : N→ A that we used. Given f (and therefore A), there
is a uniquely determined point produced.)

(You weren’t asked to prove that the construction actually works. But it
does because: the closed intervals Jn are nested, i.e. Jn+1 ⊆ Jn for all n, and are
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bounded in [0, 1], so by the lemma proved in class, the intersection ∩n∈NJn 6= ∅.
The intersection is a subset of the Cantor set C since each Jn ⊆ Cn - so if
x ∈ ∩n∈NJn then x ∈ Jn for each n, so x ∈ Cn for each n, so x ∈ C. The
intersection consists of at most a singleton since for any n, it is a subset of Jn,
which has length 1/3n. So if x, y are both in the intersection, then for all n ∈ N,
x, y ∈ Jn, so for all n ∈ N, |x − y| ≤ 1/3n, so in fact |x − y| ≤ 0, so x = y.
So the intersection produces a singleton {x} ⊆ C. And x /∈ A since if it was,
then x = f(n) for some n ∈ N but we ensured that f(n) /∈ Jn+1, but x ∈ Jn+1,
contradiction.)
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8. Let (X, τ), (X1, τ1) and (X2, τ2) be topological spaces. Let ρ be the prod-
uct topology on X1 ×X2 (given by τ1, τ2).

(a) Let f1 : X → X1 be continuous (with respect to τ and τ1) and f2 : X →
X2 continuous (with respect to τ and τ2). Let g : X → X1 ×X2 be the map

g(x) = (f1(x), f2(x)).

Show that g is continuous (with respect to τ and ρ).

Part (b) is not required for 4500 students (but may be completed for extra
credit).

(b) Let A1 ⊆ X1 and A2 ⊆ X2. Show that

Cl(A1 ×A2) = Cl(A1)× Cl(A2).

(Here Cl(A1 × A2) is the closure of A1 × A2 with respect to ρ, Cl(A1) with
respect to τ1, and Cl(A2) with respect to τ2). (Partial credit for showing just
one direction i.e. ⊆ or ⊇).

Solution. (a) Let U ∈ ρ. We must show that g−1(U) ∈ τ . First, we have
that

U =
⋃
C =

⋃
V ∈C

V

for some C ⊆ b, where b is the conventional basis for the product topology.
That is, b is the set of cross products U1 × U2 where U1 ∈ τ1 and U2 ∈ τ2. So
C is a collection of some such cross products. Now

g−1(U) = g−1(
⋃

U1×U2∈C
U1 × U2)) =

⋃
U1×U2∈C

g−1(U1 × U2).

We need to see g−1(U) ∈ τ , so it suffices to show that g−1(U1 × U2) ∈ τ for
each U1×U2 ∈ C, since then the union on the right is also in τ , since unions of
elements of τ produce more elements of τ .

Let’s in fact show that g−1(U1 × U2) ∈ b for each U1 × U2 ∈ b (this does it
as C ⊆ b). So, we have U1 ∈ τ1 and U2 ∈ τ2. Now

g−1(U1 × U2) = {x ∈ X | g(x) ∈ U1 × U2}

= {x ∈ X | (f1(x), f2(x)) ∈ U1 × U2}

= {x ∈ X | f1(x) ∈ U1 & f2(x) ∈ U2}

= {x ∈ X | f1(x) ∈ U1} ∩ {x ∈ X | f2(x) ∈ U2}

= f−11 (U1) ∩ f−12 (U2).

But f1 is continuous from (X, τ) to (X1, τ1), and U1 ∈ τ1, so f−11 (U1) ∈ τ .
Similarly, f2 is continuous and U2 ∈ τ2, so f−12 (U2) ∈ τ . And τ is closed under
finite intersections, so the above intersection is in τ . Therefore g−1(U1×U2) ∈ τ ,
as required.

(b) I’ll do this a couple of ways. The first uses the characterization of the
closure given in one of the problems on the review.
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By that characterization, we have that “(i) (x1, x2) ∈ Cl(A1 × A2)” iff “(ii)
for every open set U including (x1, x2), we have U ∩A1 ×A2 6= ∅.”

So let (x1, x2) ∈ Cl(A1 × A2), so (i), and therefore (ii), holds. We want to
show that (x1, x2) ∈ Cl(A1) × Cl(A2), i.e. that x1 ∈ Cl(A1) and x2 ∈ Cl(A2).
We use the characterization again, so we need to show that for all U1 ∈ τ1,
if x1 ∈ U1 then U1 ∩ A1 6= ∅, and likewise with “1” replaced with “2”. Let’s
just show the “1” case; the other will then hold by symmetry. So let U1 ∈ τ1
such that x1 ∈ U1. Then U1 × X2 ∈ ρ, since ρ is the product topology. And
(x1, x2) ∈ U1×X2. Therefore by (ii), U1×X2 ∩A1×A2 6= ∅. So let (a1, a2) be
in this non-empty intersection. Since (a1, a2) ∈ U1 ×X2, we have a1 ∈ U1, and
likewise, a1 ∈ A1. Therefore a1 ∈ U1 ∩ A1, so U1 ∩ A1 6= ∅, as required. This
proves that x1 ∈ Cl(A1). As mentioned, the fact that x2 ∈ Cl(A2) follows by
symmetry.

Now let (x1, x2) ∈ Cl(A1) × Cl(A2), i.e. x1 ∈ Cl(A1) and x2 ∈ Cl(A2). We
want to see that (x1, x2) ∈ Cl(A1 × A2). For this we verify (ii). So let U be
an open set including (x1, x2); we must show U ∩ A1 × A2 6= ∅. Since we’re
using the product topology there is U1 ∈ τ1 and U2 ∈ τ2 such that (x1, x2) ∈
U1 × U2 ⊆ U . So it suffices to show that U1 × U2 ∩ A1 × A2 6= ∅. But since
(x1, x2) ∈ U1 × U2, we have x1 ∈ U1 and x2 ∈ U2. Since x1 ∈ Cl(A1) and
x1 ∈ U1 ∈ τ1, we have that U1 ∩ A1 6= ∅ (by the characterization of closure
again). So let a1 ∈ U1 ∩A1. Similarly, U2 ∩A2 6= ∅; let a2 be in this non-empty
set. Then (a1, a2) ∈ U1 × U2 ∩ (A1 × A2), so the latter set is non-empty, as
required.

This completes the proof.

Second method:
First: we show Cl(A1 ×A2) ⊆ Cl(A1)× Cl(A2).
This follows from the facts that (i) A1×A2 ⊆ Cl(A1)×Cl(A2) and (ii) Cl(A1)×
Cl(A2) is closed in the product topology and (iii) Cl(A1 × A2) is the smallest
closed set (closed w.r.t. ρ) which has A1 ×A2 a subset.

For (i) this is because A1 ⊆ Cl(A1) and A2 ⊆ Cl(A2), so if (x, y) ∈ A1 ×A2

then x ∈ A1 and y ∈ A2, so x ∈ Cl(A1) and y ∈ Cl(A2), so (x, y) ∈ Cl(A1) ×
Cl(A2).

For (ii): Let’s verify that the product of two closed sets is closed. For note
that for anyD1 ⊆ X1 andD2 ⊆ X2 (not necessarily closed), if (x1, x2) ∈ X1×X2

then:
(x1, x2) ∈ X1 ×X2\(D1 ×D2)

⇐⇒ (x1, x2) /∈ D1 ×D2

⇐⇒ x1 /∈ D1 or x2 /∈ D2

⇐⇒ x1 ∈ X1\D1 or x2 ∈ X2\D2

⇐⇒ (x1, x2) ∈ (X1\D1)×X2 or (x1, x2) ∈ X1 × (X2\D2).

Therefore

X1 ×X2\(D1 ×D2) = ((X1\D1)×X2) ∪ (X1 × (X2\D2)).

Now assume that D1, D2 are closed (w.r.t. τ1, τ2 respectively). Then X1\D1 is
in τ1, so (X1\D1)×X2 is in ρ (the product topology), and likewise X1×(X2\D2)
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is in ρ, so the union of these two sets is also in ρ. So the above calculation shows
that X1 ×X2\(D1 ×D2) is therefore open, so D1 ×D2 is closed (still assuming
D1, D2 are each closed).

Applying this to D1 = Cl(A1) and D2 = Cl(A2), we see that Cl(A1)×Cl(A2)
is closed w.r.t. ρ.

And (iii) is a standard fact.
Second: Cl(A1)× Cl(A2) ⊆ Cl(A1 ×A2).

I’ll instead prove the contrapositive, i.e. that the complement of Cl(A1×A2) is
a subset of the complement of Cl(A1)× Cl(A2).
Proof of this: Let (x1, x2) ∈ X1 ×X2 such that (x1, x2) /∈ Cl(A1 × A2). Since
the latter closure is closed, there’s an open set U ∈ ρ such that (x1, x2) ∈ U
and U ∩Cl(A1×A2) = ∅. Therefore U ∩A1×A2 = ∅. Let U1 ∈ τ1 and U2 ∈ τ2
be such that (x1, x2) ∈ U1 × U2 ⊆ U .

Claim: Either U1 ∩A1 = ∅ or U2 ∩A2 = ∅.
For otherwise, let a1 ∈ U1 ∩A1 and a2 ∈ U2 ∩A2. Then (a1, a2) ∈ U1 ×U2 and
(a2, a2) ∈ A1 × A2, so the intersection of these two sets is non-empty, contra-
dicting that U ∩A1 ×A2 = ∅ and U1 × U2 ⊆ U .

Now if U1 ∩ A1 = ∅ then x1 /∈ Cl(A1), since x1 ∈ U1 and Cl(A1) ⊆ X1\U1,
since X1\U1 is closed and contains A1 as a subset. Therefore (x1, x2) /∈ Cl(A1)×
Cl(A2).

Similarly if U2 ∩A2 = ∅ then x2 /∈ Cl(A2), so (x1, x2) /∈ Cl(A1)× Cl(A2).
So in either case we have (x1, x2) /∈ Cl(A1)× Cl(A2), as required.
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