Test II

Math 3680.002
Nov. 4, 2009
Name:
by writing my name i swear by the honor code

Read all of the following information before starting the test:

- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible to ensure full credit.
- Circle your final answers for the multiple choice questions.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 6 problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Good luck!

1. (25 points) The probability mass function for the random variable X is given by the following table:

x	$f_{X}(x)$	$x f_{X}(x)$
0	$1 / 10$	0
1	$1 / 5$	$1 / 5$
2	$3 / 10$	$3 / 5$
3	$2 / 5$	$6 / 5$

(a) Find the cumulative distribution function for X

$$
F(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{10} & \text { if } 0 \leq x<1 \\ \frac{3}{10} & \text { if } 1 \leq x<2 \\ \frac{6}{10} & \text { if } 2 \leq x<3 \\ 1 & \text { if } 3 \leq x\end{cases}
$$

(b) Fill in the third column of the above table and use them to compute the expected value of X :

$$
E(X)=0+\frac{1}{5}+\frac{3}{5}+\frac{6}{5}=2
$$

2. (15 points) In a small town, out of 6 accidents that occurs in June 1986, three happened on Friday the 13th. Is this a good reason for a superstitious person to argue that Friday the 13th is inauspicious?

Let X be \# of accidents that would happen on Friday the 13 th under the hypothesis H_{0} that there is nothing special about Friday the 13th.

$$
P\left(X \geq 3 \mid H_{0}\right)=1-\sum_{x=0}^{2}\binom{6}{x}\left(\frac{1}{30}\right)^{x}\left(1-\frac{1}{30}\right)^{6-x}=1-0.9993=0.0007
$$

Since this P-value is quite small, this is a good reason for a superstitious person to argue that Friday the 13th is inauspicious.
3. (15 points) Let X be the number of dots showing up when rolling a fair die once. Find $\operatorname{Var}(-X+10)$.

Since

$$
\begin{gathered}
E(X)=1 \times \frac{1}{6}+\cdots+6 \times \frac{1}{6}=\frac{7}{2} \\
E\left(X^{2}\right)=1^{2} \times \frac{1}{6}+2^{2} \times \frac{1}{6}+\cdots+6^{2} \times \frac{1}{6}=\frac{91}{6}, \\
\operatorname{Var}(-X+10)=\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{91}{6}-\left(\frac{7}{2}\right)^{2}=\frac{35}{12} .
\end{gathered}
$$

4. (24 points) A coin has been bent in such a way that it comes up heads 60% of the time. This bent coin is placed in a box with nine fair coins. A coin is selected randomly from the box. To test if the selected coin is a fair coin, we toss the coin five times and reject the hypothesis of a fair coin if the number of heads coming up is at least four times. In other words, if X denote the number of heads coming up in the five tosses, our decision rule is to reject the fair-coin hypothesis if $X \geq 4$ and retain the fair-coin hypothesis otherwise.
(a) What are the null hypothesis and alternative hypothesis for this problem?
$H_{0}: p=\frac{1}{2}$
$H_{a}: p>\frac{1}{2}$
(b) Use our decision rule, find α, the probability of a Type I error:

$$
\alpha=P\left(X \geq 4 \mid H_{0}\right)=\sum_{x=4}^{5}\binom{5}{x}\left(\frac{1}{2}\right)^{x}\left(1-\frac{1}{2}\right)^{5-x}=\frac{3}{16} .
$$

(c) Use our decision rule, find β, the probability of a Type II error:

$$
\beta=P\left(X<4 \mid H_{a}\right)=1-P\left(X \geq 4 \mid H_{a}\right)=1-\sum_{x=4}^{5}\binom{5}{x} 0.6^{x}(1-0.6)^{5-x}=1-\frac{33696}{100000}=\frac{2072}{3125} .
$$

5. (15 points) A machine makes faulty widgets 1% of the time. Let X denote the number of faulty widgets in a box of 1,000 widgets. Compute the expected value and variance of X.

$$
E(X)=n p=1000 \times 0.01=10
$$

$$
\operatorname{Var}(X)=n p(1-p)=1000 \times 0.01 \times(1-0.01)=9.9
$$

6. (6 points)

A man claims to have extrasensory perception (ESP). As a test, a fair coin is flipped 10 times, and the man is asked to predict the outcome in advance. He gets 8 out of 10 correct. Compute the P-value that he would have done at least this well if he had no ESP ?
(a) $\frac{1}{1024}$
(b) $\frac{11}{1024}$
(c) $\frac{7}{128}$
(d) $\frac{45}{1024}$
(e) None of the afore- mentioned answers.

The correct answer is (c).

Scrap Page

(please do not remove this page from the test packet)

Scrap Page

(please do not remove this page from the test packet)

