Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_5^1$ 

## AD, Large Cardinals, and Partition Properties

#### S. Jackson

Department of Mathematics University of North Texas jackson@unt.edu

ICWAC June, 2009, Bonn

S. Jackson AD, Large Cardinals, and Partition Properties

イロト イボト イヨト イヨト

We work in the base theory ZF + DC. Most of the the time we will also assume AD.

General Question: Describe the exact large cardinal properties of all of the cardinals  $\kappa < \Theta$  assuming AD.

The large cardinal properties must have versions that can be stated in a choice-less context.

Some examples: supercompact, measurable, Rowbottom, Jonsson.

Strength can also be measured in terms of *partition properties*.

General Question: Describe the exact partition properties of all the cardinals below  $\Theta$  assuming AD.

ヘロト 人間 ト 人 ヨ ト・

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_5^1$  Supercompactness Partition Properties Jonsson and Rowbottom AD Cardinal structure

## Large Cardinal Definitions

#### Definition

 $\kappa$  is *measurable* if there is a  $\kappa$ -complete ultrafilter on  $\kappa$ .

From AD every ultrafilter on a set is countably additive, that is, is a *measure*.

If  $\kappa$  is measurable, then  $\kappa$  has a normal measure. In general,  $\kappa$  may have many normal measures. We say a measure  $\mu$  on  $\kappa$  is semi-normal if  $\mu(C) = 1$  for every c.u.b. set  $C \subseteq \kappa$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

| Introduction                 | Supercompactness      |
|------------------------------|-----------------------|
| Large Cardinal Properties    | Partition Properties  |
| Below $\delta_3^1$           | Jonsson and Rowbottom |
| Below $\delta_5^{\intercal}$ | AD Cardinal structure |

If  $\kappa$  is measurable, then  $\kappa$  is regular. However,  $\kappa$  need not be large.

Solovay showed  $\omega_1$  is measurable.

Moschovakis, Martin, Kunen showed all the  $\delta_n^1$  are regular and then measurable.



There are other regular cardinals below the projective ordinals, and these were shown to be measurable as well.

Using techniques of inner-model theory Steel showed:

## Theorem (Steel)

 $(AD + V = L(\mathbb{R}))$  Every regular  $\kappa < \Theta$  is measurable.

The proof also showed HOD(x) satisfies the GCH below  $\Theta$ .

So, any wellordered collection of subsets of  $\kappa < \Theta$  has size  $< \kappa^+$ .

イロト イボト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_3^1$ Below  $\delta_c^1$  Supercompactness Partition Properties Jonsson and Rowbottom AD Cardinal structure

## Supercompactness

#### Definition

 $\kappa$  is  $\lambda$ -supercompact if there is a fine, normal measure on  $\mathcal{P}_{\kappa}(\lambda)$ .

Solovay showed that  $\omega_1$  is  $< \Theta$  supercompact from  $AD_{\mathbb{R}}$ . This was shown from AD (for  $\leq \delta_1^2$ ) by Harrington Kechris., and Woodin for  $< \Theta$ .

Becker showed that  $\omega_2$  is  $\delta_1^2$ -supercompact from AD.

イロト イポト イヨト イヨト

 Introduction
 Supercompactness

 Large Cardinal Properties
 Partition Properties

 Below  $\delta_1^+$  Jonsson and Rowbottom

 Below  $\delta_5^+$  AD Cardinal structure

We showed all the  $\delta_n^1$  are  $\delta_1^2$ -supercompact.

We generalized this too show:

#### Theorem

All the regular  $\kappa$  which are Suslin or the successor of a Suslin are  $\delta_1^2$ - supercompact.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Introduction
 Supercompactness

 Large Cardinal Properties
 Partition Properties

 Below  $\delta_1^+$  Jonsson and Rowbottom

 Below  $\delta_5^+$  AD Cardinal structure

#### Question

How supercompact are the other regular cardinals?

In particular, how supercompact are the other regular cardinals below the projective ordinals?

Many questions about supercompactness measures remain.

A theorem of Woodin says that the supercompactness measures on  $\mathcal{P}_{\omega_1}(\lambda)$  are unique. This does not hold for  $\kappa > \omega_1$ .

#### Question

How many supercompactness measures are there on  $\mathcal{P}_{\kappa}(\lambda)$ ?

For example, there are at least two distinct supercompactness measures on  $\mathcal{P}_{\delta^1_3}(\delta^1_4)$ .

Introduction Large Cardinal Properties Below  $\delta_{1}^{3}$ Below  $\delta_{k}^{2}$  Supercompactness Partition Properties Jonsson and Rowbottom AD Cardinal structure

## **Partition Properties**

Recall the Erdős-Rado Partition notation.

#### Definition

 $\kappa \to (\kappa)^{\lambda}$  if for every partition  $\mathcal{P} \colon (\kappa)^{\lambda} \to \{0, 1\}$  of the increasing functions from  $\lambda$  to  $\kappa$  into two pieces, there is a homogeneous  $H \subseteq \kappa$  of size  $\kappa$ .

We say  $\kappa$  has the strong partition property if  $\kappa \to (\kappa)^{\kappa}$ , and say  $\kappa$  has the weak partition property if  $\kappa \to (\kappa)^{\lambda}$  for all  $\lambda < \kappa$ .

In ZFC no infinite exponent partition relations hold. So, ZFC large cardinals properties formulated using partition properties (e.g., Ramsey, Rowbottom, Jonsson) use exponent  $< \omega$ .

イロト 不得 トイヨト イヨト

 Introduction
 Supercompactness

 Large Cardinal Properties
 Partition Properties

 Below  $\delta_1^4$  Jonsson and Rowbottom

 Below  $\delta_5^4$  AD Cardinal structure

We usually use a c.u.b. reformulation of the partition property. This involves the notion of type of a function.

#### Definition

We say  $f: \alpha \to On$  has uniform cofinality  $\omega$  if there is an  $f': \alpha \times \omega \to On$  which is increasing in the second argument and  $f(\beta) = \sup_n f'(\beta, n)$  for all  $\beta < \alpha$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



#### Definition

 $f: \alpha \to \text{On is of the correct type if } f \text{ is increasing, everywhere discontinuous, and of uniform cofinality } \omega$ .

We can likewise define uniform cofinality  $\omega_1$ ,  $\omega_2$ , etc.

More generally, for any  $g: \alpha \to On$  we can define f having uniform cofinality g: there is an

$$f': \{(\beta, \gamma): \beta < \alpha, \gamma < g(\beta)\}$$

with  $f(\beta) = \sup_{\gamma} f'(\beta, \gamma)$ .

We use frequently the "almost everywhere" versions of these notions with respect to some measure  $\mu$  on dom(*f*).

Introduction Supercompactness
Large Cardinal Properties
Below  $\delta_1^1$  Jonsson and Rowbottom
Below  $\delta_5^2$  AD Cardinal structure

#### Example

For functions  $f: \omega_1 \to \omega_1$  there are two uniform cofinalities almost everywhere with respect to the normal measure on  $\omega_1$ . Namely,  $f(\alpha)$  has uniform cofinality  $\omega$  and  $f(\alpha)$  has uniform cofinality  $\alpha$ .

For functions  $f: \lambda \to \kappa$  of type g, let  $\lambda' = \text{o.t.}(\text{dom}(g))$ .

The partition relation  $\kappa \to (\kappa)^{\lambda'}$  induces a partition relation  $\kappa \xrightarrow{g} (\kappa)^{\lambda}$  of functions  $f \colon \lambda \to \kappa$  of type g with c.u.b. homogeneous sets (increasing, discontinuous, and of uniform cofinality g).

イロト イボト イヨト・

Introduction Supercompactness
Large Cardinal Properties
Below  $\delta_1^1$  Jonsson and Rowbottom
Below  $\delta_5^2$  AD Cardinal structure

#### The simplest type is:

#### Definition

*f* has the correct type if *f* is increasing, discontinuous, and of uniform cofinality  $\omega$ .

#### Example

We have the strong partition relation on  $\omega_1$  for functions of the correct type, and also for functions of type  $g(\alpha) = \alpha$ .

The first induces the  $\omega$ -cofinal normal measure on  $\omega_2$ , and the second the  $\omega_1$ -cofinal normal measure on  $\omega_2$ .

イロト 不得 トイヨト イヨト

 $\begin{array}{c|c} \mbox{Introduction} & \mbox{Supercompactness} \\ \mbox{Large Cardinal Properties} & \mbox{Partition Properties} \\ \mbox{Below } \delta_3^1 & \mbox{Jonsson and Rowbottom} \\ \mbox{Below } \delta_5^1 & \mbox{AD Cardinal structure} \end{array}$ 

An easy argument shows that

$$\kappa \to (\kappa)^{\lambda'} \Rightarrow \kappa \xrightarrow{g} (\kappa)^{\lambda}$$

We say  $\kappa \xrightarrow[c.u.b.]{c.u.b.} (\kappa)^{\lambda}$  if the c.u.b. version of the partition property holds for *f* of the correct type.

On the other hand,  $\kappa \underset{\text{c.u.b.}}{\longrightarrow} (\kappa)^{\lambda}$  implies  $\kappa \to (\kappa)^{\lambda}$ .

So, for  $\lambda = \omega \cdot \lambda$ , the usual version  $\kappa \to (\kappa)^{\lambda}$  is equivalent to the c.u.b. version  $\kappa \xrightarrow[c.u.b.]{} (\kappa)^{\lambda}$ .

イロト イボト イヨト イヨト



We officially adopt the c.u.b. versions of the partition properties.

- $\kappa \to (\kappa)^2$  implies (using c.u.b. version) that  $\kappa$  is measurable.
- In fact, the  $\omega$ -c.u.b. filter is a normal measure.
- This implies  $\kappa \to (\kappa)^{<\omega}$ .
- So,  $\kappa$  is measurable iff  $\kappa \to (\kappa)^2$  iff  $\kappa \to (\kappa)^{<\omega}$ .

So, assuming  $V = L(\mathbb{R})$ , this holds for all regular cardinals  $\kappa < \Theta$ .

イロト イポト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_5^1$ Below  $\delta_5^2$  Supercompactness Partition Properties Jonsson and Rowbottom AD Cardinal structure

## Jonsson and Rowbottom Cardinals

#### Definition

 $\kappa$  is Jonsson if for every  $f \colon \kappa^{<\omega} \to \kappa$  there is an  $A \subseteq \kappa$ ,  $|A| = \kappa$  such that  $f''(A^{<\omega}) \neq \kappa$ .

Equivalent to the non-existence of a Jonsson algebra.

#### Definition

κ is Rowbottom if for every *f* :  $κ^{<\omega} → δ < κ$ , there is an *A* ⊆ κ, |A| = κ, with *f*''(*A*<sup><ω</sup>) countable.

イロト イボト イヨト イヨト

 Introduction
 Supercompactness

 Large Cardinal Properties
 Partition Properties

 Below  $\delta_1^2$  Jonsson and Rowbottom

 Below  $\delta_2^2$  AD Cardinal structure

ZF facts.

- Measurable  $\Rightarrow$  Ramsey  $\Rightarrow$  Rowbottom  $\Rightarrow$  Jonsson.
- A singular Rowbottom cardinal must have cofinality  $\omega$ .
- ► Jonsson cardinals imply 0<sup>#</sup> exists.

Some ZFC facts.

- Jonsson and Rowbottom cardinals are equiconsistent.
- It is consistent that every Jonsson cardinal is Ramsey.
- (Tryba, Woodin) If  $\kappa$  is a regular Jonsson cardinal then every stationary  $S \subseteq \kappa$  reflects. In particular, successors of regulars are not Jonsson.

イロト イボト イヨト イヨト

Using the cardinal structure given by AD we showed.

#### Theorem (J, Löwe)

Assume AD. then every cardinal below  $\aleph_{\omega_1}$  is Jonsson.

Woodin then showed using inner-model theory:

#### Theorem (Woodin)

Assume  $AD + V = L(\mathbb{R})$  (and so forth). Then every  $\kappa < \Theta$  is Jonsson.

We also believe we can show:

#### Theorem (J, Löwe)

Assume AD. Every cardinal below  $\aleph_{\omega_1}$  of cofinality  $\omega$  is Rowbottom.

 Introduction
 Supercompactness

 Large Cardinal Properties
 Partition Properties

 Below  $\delta_1^1$  Jonsson and Rowbottom

 Below  $\delta_5^1$  AD Cardinal structure

#### Question

Assume AD. Is every cardinal  $\kappa < \Theta$  of cofinality  $\omega$  Rowbottom?

#### Question

What partition properties do the various cardinals below  $\aleph_{\omega_1}$  have assuming AD? What about general cardinals below  $\Theta$ ?

イロト イボト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_5^3$ Below  $\delta_5^2$  Supercompactness Partition Properties Jonsson and Rowbottom AD Cardinal structure

## Review of cardinal structure

We assume AD henceforth.

#### Definition

 $\delta_n^1$  is the supremum of the lengths of the  $\Delta_n^1$  prewellorderings of the reals.

- $\delta_1^1 = \omega_1, \, \delta_3^1 = \omega_{\omega+1}, \, \delta_5^1 = \omega_{\omega^{\omega^{\omega}}+1}, \, \delta_7^1 = \omega_{\omega(5)+1}, \, \text{etc.}$  $(\omega(n+1) = \omega^{\omega(n)}).$
- $\delta_{2n+2}^1 = (\delta_{2n+1}^1)^+$ .
- ►  $\delta_{2n+1}^1 = (\lambda_{2n+1})^+$  where  $cof(\lambda_{2n+1}) = \omega$ . The  $\lambda_{2n+1}$ ,  $\delta_{2n+1}^1$  are the Suslin cardinals below the projective ordinals.
- The same pattern continues below  $\aleph_{\omega_1}$ .

イロト イボト イヨト・

| Introduction               | Supercompactness      |
|----------------------------|-----------------------|
| Large Cardinal Properties  | Partition Properties  |
| Below $\delta_3^1$         | Jonsson and Rowbottom |
| Below $\delta_5^{\dagger}$ | AD Cardinal structure |

- $\delta_{2n+1}^1$  has the strong partition property.
- ► There are  $2^{n+1} 1$  many regular cardinals between  $\delta_{2n+1}^1$  and  $\delta_{2n+3}^1$ .
- ► All the successor cardinals between  $\delta_{2n+1}^1$  and  $\delta_{2n+3}^1$  have cofinality >  $\delta_{2n+1}^1$ .

通 ト イ ヨ ト イ ヨ ト

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_2^1$  Supercompactness Partition Properties Jonsson and Rowbottom AD Cardinal structure

## Picture of the Cardinal Structure



イロト イボト イヨト イヨト

э

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_1^3$ 

Level 2-Trees  $\omega_n$  Jonsson  $\omega_\omega$  Rowbottom



**Theorem** All the  $\omega_n$  are Jonsson and  $\omega_{\omega}$  is Rowbottom.

We give the proofs using methods that will generalize (which we sketch later).

**Definition**  $W_1^m$  is the *m*-fold product of the  $\omega$ -cofinal, normal measure on  $\omega_1$ .

 $W_1^m$  is the measure induced from the weak partition relation on  $\delta_1^1$  and the ordered set  $\{1, 2, ..., m\}$ 

イロト イボト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_1^4$ Below  $\delta_2^4$ Rowbottom

## Fact (Martin)

If  $\kappa$  has the strong partition property and  $\mu$  is a measure on  $\kappa$ , then  $j_{\mu}(\kappa)$  is a cardinal.

#### Fact

If  $\kappa$  has the strong partition property and  $\mu$  is a semi-normal measure on  $\kappa$ , then  $j_{\mu}(\kappa)$  is a regular cardinal.

#### Lemma

$$j_{W_1^m}(\omega_1)=\omega_{m+1}.$$



Consider the algebra with single generator  $v_1$  and operation  $\oplus$ . So the terms are  $t = \underbrace{v_1 \oplus \cdots \oplus v_1}_{t \oplus \cdots \oplus t_1}$ 

We assign  $o(v_1) = 1$ , and  $o(s \oplus t) = o(s) + o(t)$ , so o(t) = m above.

We have an ordering  $<_t$  associated to the term *t*, namely the order type of *m*.

Corresponding to this term we associate two measures.

m

So, o.t.(t) = order-type of  $<_t = m$ .

(日)

э.



**wlift**(*t*) is the measure defined by the weak partition relation on  $\delta_1^1$  and  $<_t$ . So, **wlift**(*t*) =  $W_1^m$ .

**slift**(*t*) is the measure on  $\omega_{m+1}$  induced from the strong partition relation on  $\delta_1^1$  and the measure **wlift**(*t*).

The measure **slift**(*t*) depends on the way in which we identify  $(\omega_1)^m$  with  $\omega_1$  (there are (m-1)! ways to do this).

It turns out not to matter, so we take reverse lexicographic order (first by largest, then next largest, etc.).

The fact that the ordering doesn't matter is related to the "global embedding theorem."

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_1^1$ 

Level 2-Trees  $\omega_n$  Jonsson  $\omega_\omega$  Rowbottom

## Types of Functions on $(\omega_1)^n$

#### Fact

If  $f: (\omega_1)^n \to On$ , then there is a  $W_1^n$  measure one set restricted to which f is ordered by:

$$f(\alpha_1,\ldots,\alpha_n) \leq f(\beta_1,\ldots,\beta_n) \text{ iff } (\alpha_{\pi(1)},\ldots,\alpha_{\pi(j)}) \leq_{lex} (\beta_{\pi(1)},\ldots,\beta_{\pi(j)})$$

where  $\pi = (\pi(1), \dots, \pi(j))$  ( $j \le n$ ) is a partial permutation.

If  $f: (\omega_1)^n \to \omega_1$ , then  $\pi(1)$  is maximal. If j = n we say f depends on all its arguments.

 Introduction
 Level 2-Trees

 Large Cardinal Properties
  $\omega_n$  Jonsson

 Below  $\delta_1^c$   $\omega_\omega$  Rowbottom

#### Fact

If  $f: (\omega_1)^n \to On$ , then almost everywhere  $f(\vec{\alpha})$  either has uniform cofinality  $\omega$  or has uniform cofinality  $\alpha_{\pi(k)}$  for some  $k \leq j$ .

In the latter case there is a partial permutation  $\pi'$  extending  $\pi$  which determines the uniform cofinality.

#### Example

If  $f: (\omega_1)^3 \to \omega_1$  has type  $\pi = (3, 1, 2)$ , and  $f(\alpha_1, \alpha_2, \alpha_3)$  has uniform cofinality  $\alpha_2$ , then  $\pi' = (4, 1, 3, 2)$ .

The possible types are described by  $(\pi, \omega)$ ,  $(\pi, \pi')$ , or  $(\pi, s)$  (the latter for continuous functions).

Introduction Level 2-Trees Large Cardinal Properties  $\omega_n$  Jonsson Below  $\delta_5^1$   $\omega_{\omega}$  Rowbottom

Convention: For  $f: (\omega_1)^n \to \omega_1$ , we write the arguments to f in any order.

#### Definition

Let  $f: (\omega_1)^n \to \omega_1$  be of type  $\pi = (n, i_2, ..., i_n)$ . For  $1 \le j \le n$ , we define the *j*<sup>th</sup> invariant, f(j) (of type  $\pi \upharpoonright j$ ), by:

$$f(j)(\alpha_n, \alpha_{i_2}, \ldots, \alpha_{i_j}) = \sup\{f(\alpha_n, \ldots, \alpha_{i_n}) \colon \vec{\alpha} \cong \pi\}$$

Also,

$$f^{\mathbf{s}}(\alpha_n, \alpha_{i_2}, \ldots, \alpha_{i_j}) = \sup_{\beta < \alpha_{i_j}} f(j)(\alpha_n, \alpha_{i_2}, \ldots, \alpha_{i_{j-1}}, \beta)$$

(日)

э

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_2^4$  $\omega_{\omega}$  Rowbottom

#### Example

Suppose  $f: (\omega_1)^4 \to \omega_1$  has type  $\pi = (4, 1, 3, 2)$ . Then

$$f(3)(\alpha,\beta,\gamma) = \sup_{\eta} f(\alpha,\eta,\beta,\gamma)$$

$$f(2)(\alpha,\beta) = \sup_{\eta_1 < \eta_2} f(\alpha,\eta_1,\eta_2,\beta).$$

Given two functions  $f, g: (\omega_1)^n \to \omega_1$ , there is a  $W_1^n$  measure one set on which they are ordered as follows.

Say *f* has type  $(\pi, \pi')$ , *g* has type  $(\sigma, \sigma')$ . Say [f] < [g].

イロト イポト イヨト イヨト



Let  $j_m \leq n$  be least such that  $\pi' \upharpoonright (j_m + 1) \ncong \sigma' \upharpoonright (j_m + 1)$ .

 $j_m - 1$  is largest *j* such that [f(j)] could equal [g(j)] for functions of these types.

Then there is a  $j \le j_m$  such that (almost everywhere)

$$f(\alpha_1,\ldots,\alpha_n) < g(\beta_1,\ldots,\beta_m) \text{ iff } (\alpha_n,\alpha_{i_2},\ldots,\alpha_{i_j}) \leq_{\text{lex}} (\beta_n,\beta_{i_2},\ldots,\beta_{i_k}).$$

Note that  $\pi \upharpoonright j \cong \sigma \upharpoonright j$ . Here  $(n, i_2, \ldots, i_j) = \pi \upharpoonright j = \sigma \upharpoonright j$ .

(日)

э

 Introduction
 Level 2-Trees

 Large Cardinal Properties
  $\omega_n$  Jonsson

 Below  $\delta_5^1$   $\omega_\omega$  Rowbottom

This generalizes immediately to finitely many functions.

An arrangement of finitely many functions can be described by a level-2 tree of uniform cofinalities  $\mathcal{R}$ .

This is a function with domain a finite subtree of  $\omega^{<\omega}$  satisfying:

- $\mathcal{R}(\emptyset) = (1)$  (the unique permutation of length 1).
- *R*(*i*<sub>1</sub>,...,*i*<sub>k</sub>) is either the symbol ω, the symbol s, or a
   permutation extending *R*(*i*<sub>1</sub>,...,*i*<sub>k-1</sub>).
- If  $\mathcal{R}(\vec{i}) = \omega$  or *s*, then  $\vec{i}$  is maximal in dom( $\mathcal{R}$ ).
- If  $\mathcal{R}(i_1, \ldots, i_k) = s$ , then  $i_k$  is least node extending  $(i_1, \ldots, i_{k-1})$ .

(日)

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_2^1$ 

Level 2-Trees  $\omega_n$  Jonsson  $\omega_\omega$  Rowbottom

## Picture of a Level-2 Tree



ヘロト ヘ団ト ヘヨト ヘヨト

æ



Given the level-2 tree  $\mathcal{R}$ , we define an ordering  $<_{\mathcal{R}}$ .

dom( $<_{\mathcal{R}}$ ) is the set of tuples  $(\alpha_1, i_1, \ldots, \alpha_k, i_k)$  where  $(i_1, \ldots, i_k)$  is a terminal node of dom( $\mathcal{R}$ ) and  $(\alpha_1, \ldots, \alpha_k) \cong \mathcal{R}(i_1, \ldots, i_{k-1})$ .

We say  $f: \operatorname{dom}(<_{\mathcal{R}}) \to \omega_1$  is of type  $\mathcal{R}$  if f is order-preserving, discontinuous (except for s case), and  $f(\alpha_1, i_1, \ldots, \alpha_k, i_k)$  has uniform cofinality as specified by  $\mathcal{R}(i_1, \ldots, i_k)$ . If  $\mathcal{R}(i_1, \ldots, i_k) = s$ , then  $f(\alpha_1, i_1, \ldots, \alpha_k, i_k)$  is the supremum of smaller values for limit  $\alpha_k$  and of uniform cofinality  $\omega$  otherwise.

イロト 不得 トイヨト イヨト

 Introduction
 Level 2-Trees

 Large Cardinal Properties
  $\omega_n$  Jonsson

 Below  $\delta_1^3$   $\omega_\omega$  Rowbottom

#### Lemma

Suppose  $f: dom(<_{\mathcal{R}}) \to \omega_1$  and there is a c.u.b. C such that  $f \upharpoonright C$  is of type  $\mathcal{R}$  ( $f \upharpoonright C$  means all the  $\alpha_j$  are in C). Then there is an f' satisfying:

- f has type R.
- *f*' = *f* almost everywhere (i.e., *f*' ↾ *D* = *f* ↾ *D* for some c.u.b.
   *D*).
- $ran(f') \subseteq ran(f)$ .

#### Proof.

Define  $f'(\alpha_1, i_i, \ldots, \alpha_k, i_k) = f(\ell_C(\alpha_1), i_1, \ldots, \ell_C(\alpha_k), i_k)$ , where  $\ell_C(\alpha)$  is the  $\alpha^{\text{th}}$  element of *C*.

This f' works.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Large Cardinal Properties Below  $\delta_3^1$ Below  $\delta_-^1$ 

Level 2-Trees  $\omega_n$  Jonsson  $\omega_\omega$  Rowbottom

## $\omega_n$ is Jonsson

Fix  $F: (\omega_n)^{<\omega} \to \omega_n$ .

Let  $\mathcal{R}_1, \mathcal{R}_2, \ldots$  enumerate the level-2 trees describing an arrangement of functions  $f_1, \ldots, f_m, f_{m+1} \colon (\omega_1)^{n-1} \to \omega_1$ . We assume each  $f_i$  is of type  $(\pi, \omega)$  where  $\pi = (n - 1, 1, 2, \ldots, n - 2)$ .

For each *i*, consider the partition  $\mathcal{P}_i$  of functions  $f: \operatorname{dom}(<_{\mathcal{R}_i}) \to \omega_1$  of type  $\mathcal{R}_i$  according to whether  $F([f_1], \ldots, [f_m]) \neq [f_{m+1}]$ .

Here *f* induces the functions  $f_1, \ldots, f_{m+1}$ .

 Introduction
 Level 2-Trees

 Large Cardinal Properties
  $\omega_n$  Jonsson

 Below  $\delta_1^3$   $\omega_\omega$  Rowbottom

#### Claim

On the homogeneous side of each  $\mathcal{P}_i$  the stated property holds.

#### Proof.

Suppose *C* were homogeneous for the contrary side. Let C' = limit points of *C*. Fix  $f: dom(<_{\mathcal{R}_i}) \to C'$  of type  $\mathcal{R}_i$ . Replace *f* by *g* where  $g(\alpha_1, i_1, \ldots, \alpha_{n-1}, i_{n-1}) = f(\cdots)$  except when  $\vec{i}$  correspond to  $f_{m+1}$  in which case we set

$$g(\alpha_1, i_1, \ldots, \alpha_{n-1}, i_{n-1}) = N_C(f(\alpha_1, i_1, \ldots, \alpha_{n-1}, i_{n-1})).$$

Here  $N_C(\alpha)$  is the least element of *C* greater than  $\alpha$ .

Then *g* is also of type  $\mathcal{R}_i$ , has range in *C*, and induces  $f_1, \ldots, f_m, g_{m+1}$  with  $[g_{m+1}] \neq [f_{m+1}]$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Let now  $C_i$  be homogeneous for the stated side of  $\mathcal{P}_i$ , and let  $C = \bigcap_i C_i$ .

Let 
$$A = \{ \alpha < \omega_n \colon \alpha = [f], f \colon (\omega_1)^{n-1} \to C, f \text{ of type } (\pi, \omega) \}.$$

Easily A has size  $\omega_n$ . Fix  $g: (\omega_1)^{n-1} \to C$  of type  $(\pi, \omega)$ .

Claim  $[g] \notin F''(A^{<\omega}).$ 

Proof.

Suppose  $[g] = F([f_1], ..., [f_m])$ . Let *i* be such that  $f_1, ..., f_m, f_{m+1} = g$  has type  $\mathcal{R}_i$  almost everywhere. By the lemma, get  $f'_1, ..., f'_m, f'_{m+1}$  in *C* everywhere. This contradicts the homogeneity of  $C \subseteq C_i$ .

(日)

Introduction Large Cardinal Properties Below  $\delta_3^1$ Below  $\delta_-^1$ 

Level 2-Trees  $\omega_n$  Jonsson  $\omega_\omega$  Rowbottom

## $\omega_{\omega}$ is Rowbottom

Fix a function  $F: (\omega_{\omega})^{<\omega} \rightarrow \omega_n$  for some *n*.

Let  $\mathcal{R}_1, \mathcal{R}_2, \ldots$  enumerate the possible level-2 trees giving the types of finitely many  $f_1, \ldots, f_k$  where  $[f_j] < \omega_{\omega}$ .

For each *i*, let  $\overline{\mathcal{R}}_i$  denote the type induced by  $\mathcal{R}_i$  by restricting to n-1 invariants of the  $f_j$ .

This is equivalent to restricting the tree  $\mathcal{R}_i$  to nodes of height  $\leq n-1$ .



#### Example

Say n = 3, k = 3 (i.e.,  $f_1$ ,  $f_2$ ,  $f_3$ ), and  $\mathcal{R}_i$  and  $\overline{\mathcal{R}}_i$  as shown. Here  $\mathcal{R}_i$  corresponds to  $f_1$ ,  $f_2$ ,  $f_3$  representing  $\alpha_1, \alpha_2 < \omega_4, \alpha_3 < \omega_2$ . Also,  $[f_1(1)] = [f_2(1)] < [f_3(1)]$  and  $[f_1(2)] < [f_2(2)]$ .





For fixed  $\mathcal{R}_i$  corresponding to  $f_1, \ldots, f_k$ , a non-terminal node  $p = (i_1, i_2, \ldots, i_n)$ , we define an  $\mathcal{R}_{i,p}$  extending  $\mathcal{R}_i$ .

 $\mathcal{R}_{i,p}$  has a copy of the tree  $\mathcal{R}_i$  below the node *p* copied to below *p* and put completely above the original copy.

This corresponds to adding new function  $g_1, \ldots, g_\ell$  of the same type as  $f_1, f_\ell$  where we assume  $f_1, \ldots, f_\ell$  correspond to nodes below p. Note that  $g_a(n-1) = f_b(n-1)$  for ' $1 \le a, b \le \ell$ .

イロト イポト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_2^4$  $\omega_{\omega}$  Rowbottom

#### Example

If j of the previous example corresponds to the node labeled (3, 2, 1) then we have the following.



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



The Partition: We partition *f* of type  $\mathcal{R}_{i,p}$  according whether

$$F([f_1],\ldots,[f_\ell],[f_{\ell+1}],\ldots,[f_k]) = F([g_1],\ldots,[g_\ell],[f_{\ell+1}],\ldots,[f_k]).$$

Here  $f: \operatorname{dom}(<_{\mathcal{R}_{i,p}}) \to \omega_1$  induces  $f_1, \ldots, f_k$  and  $g_1, \ldots, g_\ell$ .

#### Claim

On the homogeneous side of the partition the stated property holds.

(日)

э

 Introduction
 Level 2-Trees

 Large Cardinal Properties
  $\omega_n$  Jonsson

 Below  $\delta_1^+$   $\omega_\omega$  Rowbottom

The claim follows easily from a sliding argument and the following.

#### Fact

For any c.u.b.  $C \subset \omega_1$  there is an  $fdom(<_{\mathcal{R}_i}) \to C$  such that there are  $\theta \ge \omega_n$  many  $f_\alpha : dom(<_{\mathcal{R}_i}) \to C$  such that all pairs  $(f_\alpha, f_\beta)$  have the same n - 1 invariants and are of type  $\mathcal{R}_{i,p}$ .

#### Proof.

Given  $\alpha = [h], h \colon (\omega_1)^{n-1} \to \omega_1$ , define  $f_{\alpha}$  using

$$f_{\alpha}(\alpha_1, i_1, \ldots, \alpha_{n-1}, i_{n-1}, \alpha_n, \ldots, i_m) = f(\alpha_1, i_1, \ldots, \alpha_{n-1}, i_{n-1}, h(\alpha_2, \ldots, \alpha_n), \ldots, i_m).$$

The argument here uses the special types  $\pi = (n, 1, 2, 3, ..., n - 1)$  we are considering, but the proof can be made to work for other types.

S. Jackson



From the fact the claim follows since *F* has range in  $\omega_{n-1} < \theta$ .

Let  $C \subseteq \omega_1$  be homogeneous for all the partitions.

It follows that for  $\alpha_1 = [f_1], \ldots, \alpha_k = [f_k]$  with the *f*'s having range in *C* of type  $\pi$ , the value  $F(\alpha_1, \ldots, \alpha_k)$  depends only on the type  $\mathcal{R}_i$  and the n - 1 invariants  $f_i(n - 1)$ .

Let  $D \subseteq C$  be the set of closure points of C

Fix *f* of type  $\pi$  into *D*. Let  $A \subseteq \omega_{\omega}$  be the set of *g* of type (m, 1, 2, ..., m - 1) for some  $m \ge n$  with range in *C*.

Then  $|A| = \omega_{\omega}$  and  $F \upharpoonright A^{<\omega}$  takes only countably many values (depends only on the type  $\mathcal{R}_i$ ).

Introduction Large Cardinal Properties Below  $\delta_1^1$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

## Below $\delta_5^1$

Most of the arguments given above for the cardinals below  $\delta_3^1$  are general.

We need a representation of the cardinals below  $\delta_5^1$  which will allow us to use these arguments.

Such a notational system was described (and proved) below  $\delta_5^1$  by J. and Khafizov, and later by J. and Löwe for the general case  $\delta_{2n+1}^1$ .

Recall that before we had the algebra generated by a single generator  $v_1$ . This algebra  $\mathcal{R}_1$  has height  $\omega$ .

We now extend this algebra.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Large Cardinal Properties Below  $\delta_1^1$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

## The General Algebra

Have generators  $v_1, v_2, v_3, \ldots, v_{\beta}, \ldots$  and operations  $\oplus, \otimes$ .

Let  $\mathcal{A}_{\alpha}$  be the free associative, left-distributive algebra over  $\{v_{\beta}: \beta < \alpha\}.$ 

For the cardinals below  $\delta_5^1$  we only need the first  $\omega$  many generators.

Let *s*, *t*, etc. denote terms in this algebra.

For example  $t = v_1 \oplus ((v_1 \oplus v_2) \otimes v_2) \oplus (v_4 \otimes v_3) \in \mathcal{A}_5$ .

イロト 不得 トイヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_1^2$ Below  $\delta_2^4$ A Cardinal Computation

Each term can be viewed as a tree, exactly as in the case of ordinal arithmetic.

#### Example

For  $t = v_1 \oplus ((v_1 \oplus v_2) \otimes v_2) \oplus (v_4 \otimes v_3)$  we have the tree:



 $\begin{array}{c} \text{Introduction} \\ \text{Large Cardinal Properties} \\ \text{Below } \delta_1^3 \\ \text{Below } \delta_5^1 \end{array} \qquad \begin{array}{c} \text{The Ge} \\ \text{Rowbo} \\ \text{A Card} \end{array}$ 

The General Algebra Rowbottom Example A Cardinal Computation

We inductively assign to each generator  $v_{\alpha}$  an ordinal height  $o(v_{\alpha})$  and a measure  $g(v_{\alpha})$  which lives on an order-type o.t. $(v_{\alpha})$ .

We then extend these assignments to general terms  $t \in \mathcal{A}$ :  $o(t) \in On$  is the height of t, g(t) is the germ of t (a collection of measures), and an order-type o.t.(t).

Fix an ordering on the *n*-tuples, say the Gödel ordering (order first by largest element, then next largest, etc.).

We define o(t) first.

Introduction Large Cardinal Properties Below  $\delta_1^4$ Below  $\delta_5^4$ 

The General Algebra Rowbottom Example A Cardinal Computation

#### Definition

We define o(t) inductively through the following.

- ▶ o(v<sub>1</sub>) = 1
- $o(s \oplus t) = o(s) + o(t)$
- $o(s \otimes t) = o(s) \cdot o(t)$ .

• 
$$o(v_{\alpha}) = \sup\{o(t) \colon t \in \mathcal{A}_{\alpha}\}$$

This gives: 
$$o(v_1) = 1$$
,  $o(v_2) = \omega$ ,  $o(v_3) = \omega^{\omega}$ ,  
 $o(v_4) = \omega^{\omega^2}, \dots, o(v_n) = \omega^{\omega^{n-2}}$ .

For  $\alpha \geq \omega$ ,  $o(v_{\alpha}) = \omega^{\omega^{\alpha}}$ .

イロト イボト イヨト・

Introduction Large Cardinal Properties Below  $\delta_1^1$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

#### Definition

 $S_1^n$  is the measure on  $\omega_{n+1}$  induced by the strong partition relation on  $\omega_1$ , functions  $f: (\omega_1)^n \to \omega_1$  of type  $\pi = (n, 1, 2, ..., n-1)$  and the measure  $W_1^n$  on  $(\omega_1)^n$ .

Note that  $S_1^1$  is the  $\omega$ -cofinal normal measure on  $\omega_2$ . Also,  $S_1^n = \text{slift}(v_1 \cdot n)$  (using (n, 1, 2, ..., n - 1) in identifying  $(\omega_1)^n$  with  $\omega_1$ ).

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

#### Definition

We define  $g(v_n)$  for  $n < \omega$  as follows.

- g(v<sub>1</sub>) = the principal measure on 1 (a single point).
   o.t.(v<sub>1</sub>) = 1.
- $g(v_2) = W_1^1$ . o.t. $(v_2) = \omega_1$ .

• 
$$g(v_3) = S_1^1$$
. o.t. $(v_3) = \omega_2$ .

• 
$$g(v_n) = S_1^{n-2}$$
. o.t. $(v_n) = \omega_{n-1}$ .

イロト 不得 トイヨト イヨト

э

Introduction Large Cardinal Properties Below  $\delta_1^2$ Below  $\delta_2^2$ The General Algebra Rowbottom Example A Cardinal Computation

For  $t \in \mathcal{A}$ , let  $T_t$  be the finite tree with nodes labeled by generators corresponding to *t*. Then g(t) is the collection of measures  $\{v^{i_1,...,i_k}\}$  for  $(i_1,...,i_k) \in T_t$ .

Let  $<_t$  be lexicographic ordering on tuples  $(i_1, \beta_1, \ldots, i_k, \beta_k)$  where  $(i_1, \ldots, i_k) \in \text{dom}(T_t)$  and  $\beta_j < \text{o.t.}(g(v^{\vec{i}}))$ .

Then o.t.(*t*) is the length of  $<_t$ . This is obtained from the o.t.( $v^{\vec{t}}$ ) using  $+, \cdot$  as in the case of o(t).

#### Example

For 
$$t = v_1 \oplus ((v_1 \oplus v_2) \otimes v_2) \oplus (v_4 \otimes v_3)$$
 we have o.t. $(t) = 1 + (1 + \omega) \cdot \omega + \omega^{\omega^2} \cdot \omega^{\omega} = \omega^{\omega^2} \cdot \omega^{\omega}$ .

イロト イポト イヨト イヨト

 $\begin{array}{c|c} & \text{Introduction} \\ \text{Large Cardinal Properties} \\ \text{Below } \delta_5^{\uparrow} \\ \text{Below } \delta_5^{\uparrow} \end{array} \begin{array}{c} \text{The } \delta_5^{\downarrow} \\ \text{Rowl} \\ \text{A Call Cardinal Cardi$ 

The General Algebra Rowbottom Example A Cardinal Computation

#### Definition

**wlift**(*t*) is the measure on  $\delta_3^1$  induced by the weak partition relation on  $\delta_3^1$ , function  $f: \operatorname{dom}(<_t) \to \delta_3^1$  continuous (uniform cofinality  $\omega$  at successors), and the measures g(t).

**slift**(*t*) is naturally a measure on tuples  $\gamma^{\vec{i}}$ ,  $\vec{i} \in T_t$ .

#### Definition

**slift**(*t*) is the measure on  $j_{\mu}(\delta_3^1)$ ,  $\mu =$ **slift**(*t*), induced by the strong partition relation on  $\delta_3^1$ , functions  $F : \delta_3^1 \to \delta_3^1$  of the correct type, and the measure **slift**(*t*) on  $\delta_3^1$ .

As before, **slift**(*t*) depends on the bijection between  $(\delta_3^1)^n$  and  $\delta_3^1$  used.

イロト イポト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_3^1$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

#### Theorem

For any 
$$t \in \mathcal{A}_{\omega}$$
 and  $\mu = \text{wlift}(t)$ ,  $j_{\mu}(\delta_3^1) = \aleph_{\omega+o(t)+1}$ .

So, we represent the successor cardinals  $\delta_3^1 < \kappa < \delta_5^1$  as  $\kappa = j_{wlift}(t)(\delta_3^1)$  for  $t \in \mathcal{A}_{\omega}$ .

Recall the successor cardinals  $\delta_1^1 < \kappa < \delta_3^1$  were represented as  $k = j_{wlift}(y)(\delta_1^1)$  for  $t \in \mathcal{R}_1$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\begin{array}{c} \text{Introduction} \\ \text{Large Cardinal Properties} \\ \text{Below } \delta_{1}^{3} \\ \text{Below } \delta_{5}^{3} \end{array} \begin{array}{c} \text{The Generators} \\ \text{Rowbotte} \\ \text{A Cardinal Cardinal Properties} \\ \text{Cardinal Properti$ 

The General Algebra Rowbottom Example A Cardinal Computation

This representation has other applications. For example, we can easily read off the cofinalities of the successor cardinals.

# Theorem Suppose $\delta_3^1 < \aleph_{\alpha+1} < \delta_5^1$ . Let $\alpha = \omega^{\beta_1} + \dots + \omega^{\beta_n}$ , where $\omega^{\omega} > \beta_1 \ge \dots \ge \beta_n$ , be the normal form for $\alpha$ . Then:

- If  $\beta_n = 0$ , then  $cof(\kappa) = \delta_4^1 = \aleph_{\omega+2}$ .
- If  $\beta_n > 0$ , and is a successor ordinal, then  $cof(\kappa) = \aleph_{\omega \cdot 2+1}$ .
- If  $\beta_n > 0$  and is a limit ordinal, then  $cof(\kappa) = \aleph_{\omega^{\omega}+1}$ .

イロト イボト イヨト・

Introduction Large Cardinal Properties Below  $\delta_5^4$ Below  $\delta_5^4$ 

The General Algebra Rowbottom Example A Cardinal Computation

## A Rowbottom Example

The proofs of Jonsson and Rowbottom are now similar to the arguments given earlier below  $\delta_3^1$ .

#### Example

We sketch the proof that  $\kappa = \aleph_{\omega^{\omega^2}}$  is Rowbottom.

 $\aleph_{\omega^{\omega \cdot 2}} = \sup_n \aleph_{\omega^{\omega} \cdot \omega^n}$ , so we consider the terms

$$t_n = v_3 \otimes \underbrace{v_2 \otimes \cdots \otimes v_2}_n.$$

Analysis of types of functions and the sliding lemmas are proved as before. Introduction Large Cardinal Properties Below  $\delta_1^1$ Below  $\delta_5^1$ A Cardinal Computation

If  $f: \operatorname{dom}(<_{t_n}) \to \delta_3^1$ , then we define the invariants f(0),  $f(1), \ldots, f(n) = f$  (note: we regard f as being from  $(\omega_1)^n$  to  $\delta_3^1$  having uniform cofinality  $\omega_2$ ).

*f* represents  $(\alpha_0, \alpha_1, \ldots, \alpha_n)$ , where  $\alpha_0 = \sup(f), \alpha_1 = [f(1)]$ , etc.

We identify  $\vec{\alpha}$  with an ordinal by ordering first by  $\alpha_0$ , then say by  $\alpha_1$ , etc.

We consider  $F: \delta_3^1 \to \delta_3^1$  of the correct type. We define the invariants  $F(1), \ldots, F(n+1) = F$ .

$$F(j)(\alpha_0,\ldots,\alpha_{j-1}) = \sup_{\alpha_j,\ldots,\alpha_n} F(\alpha_0,\ldots,\alpha_n).$$

Introduction Large Cardinal Properties Below  $\delta_3^1$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

We sketch a proof of the key point:

Lemma Let  $C \subseteq \delta_3^1$  be c.u.b., and  $\delta < \aleph_{\omega^{\omega^2}}$ . Let  $n < \omega$ . Then there is an  $F: dom(\mu_n) \to C$  such that there are  $\theta \ge \delta$  many [F'] for  $F': dom(\mu_m) \to C$  with F'(n+1) = F.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Introduction
 The General Algebra

 Large Cardinal Properties
 Rowbottom Example

 Below  $\delta_1^2$  A Cardinal Computation

#### Proof.

Consider the ordering <' on tuples  $(\alpha_0, \ldots, \alpha_n, \beta)$  where  $\vec{\alpha} \in \text{dom}(\mu_n)$  and  $\beta < h(\alpha_0)$  for some fixed function  $h: \delta_3^1 \to \delta_3^1$ .

Choose m > n and h so that the function  $G(\alpha_0, \ldots, \alpha_m) = h(\alpha_0)$ satisfies  $[G]_{\mu_m} > \delta$ . Fix  $F : \text{dom}(<') \to C'$  of uniform cofinality  $\omega_2$ .

For 
$$\gamma = [H]_{\mu_m} < [G]_{\mu_m}$$
, set  
 $F_{\gamma}(\alpha_0, \dots, \alpha_n) = F'(\alpha_0, \dots, \alpha_n, H(\alpha_0, \dots, \alpha_m)).$ 

イロト イボト イヨト イヨト

Introduction Large Cardinal Properties Below  $\delta_1^3$ Below  $\delta_5^1$ 

The General Algebra Rowbottom Example A Cardinal Computation

## A Cardinal Computation

#### Example

We consider the cardinal  $\kappa = \aleph_{\omega^{\omega^2} + \omega^3 + 1}$ . We identify a description giving this cardinal and the corresponding term in the algebra  $A_{\omega}$ . We sketch a proof that these actually represent this cardinal.

Let 
$$t = (v_3 \otimes v_3) \oplus (v_2 \oplus v_2 \oplus v_2)$$
.

So, 
$$o(t) = \omega^{\omega \cdot 2} + \omega \cdot 3$$
.

Also, o.t.(t) =  $\omega_2 \cdot \omega_2 + \omega_1 \cdot 3$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction The General Algebra Rowbottom Example A Cardinal Properties Below  $\delta_5^1$  Rowbottom Example A Cardinal Computation

We define a description relative to the measure sequence

 $W_3, S_1^4, W_1^3, S_1^5, W_1^2.$ 

We denote elements of these measure spaces by: f,  $h_1$ ,  $(\eta_1, \eta_2, \eta_3)$ ,  $h_2$ ,  $(\eta_4, \eta_5) = f$ ,  $\vec{h}$ .

*d* is the object which defines the ordinal in the iterated ultrapower assigning to *f*, *h*<sub>1</sub>,..., the ordinal  $(d; f; h_1, (\eta_1, \eta_2, \eta_3), h_2, (\eta_4, \eta_5)) < \omega_3$  which is represented w.r.t.  $W_1^2$  by  $(\alpha, \beta) \mapsto (d; f; \vec{h}; (\alpha, \beta))$  where:

$$\mathsf{d}(f;\vec{h};\alpha,\beta)=\mathsf{h}_1^s(\eta_2,\eta_3,\mathsf{h}_3^s(2)(\eta_5,\alpha),\beta).$$

Introduction Large Cardinal Properties Below  $\delta_1^1$ Below  $\delta_1^2$ A Cardinal Computation

Let 
$$\mu = {\sf slift}(t)$$
. So,  $\mu$  is a measure on  $\delta_3^1$ .

Let 
$$\kappa_1 = j_\mu(\delta_3^1)$$
. So,  $\kappa_1 \ge \kappa$ .

Let  $\kappa_2 = (d; f; \vec{h})$  be the ordinal represented by the description. From the description analysis,  $\kappa_2 \leq \kappa$ .

To finish, it suffices to show that  $\kappa_1 \leq \kappa_2$ . It then follows that  $\kappa = j_{\mu}(\delta_3^1) = (d; f; \vec{h})$ .

イロト イボト イヨト・

Introduction Large Cardinal Properties Below  $\delta_1^2$ Below  $\delta_2^2$ The General Algebra Rowbottom Example A Cardinal Computation

We define an embedding  $\pi: j_{\mu}(\delta_3^1) \to (d; W_3; S_1^4, W_1^3, S_1^5, W_1^2)$ . For  $F: \delta_3^1 \to \delta_3^1$  representing  $[F]_{\mu}$ , let  $\pi([F])$  be represented in the iterated ultrapower by:

$$\pi([F])(f;\vec{h})=F([\theta]),$$

where  $\theta: \langle t \rightarrow \delta_3^1$  is defined as follows.

For  $\delta_1 < \delta_2 < \delta_3 < \omega_1$ , let

 $\theta(\delta_1, \delta_2, \delta_3) = f([(\alpha, \beta) \mapsto h_1(\eta_2, \eta_3, h_3(\eta_4, \delta_1, \delta_2, \delta_3), \beta)]).$ 

For  $\rho_1 = [\ell_1] < [\ell_2] = \rho_2 < \omega_2$ , let

$$\theta(\rho_1,\rho_2) = f([(\alpha,\beta) \mapsto h_1(\eta_1,\ell_1(\alpha),\ell_2(\alpha),\beta)]).$$