SOLUTION FOR APRIL 2024

Correct solutions were submitted by:

Victor Lin - Winner
Rishabh Mallidi - Runner-Up

Let $i=\sqrt{-1}$. Determine whether the following infinite products converge or diverge:

$$
\prod_{n=1}^{\infty}\left(1+\frac{i}{n}\right) \text { and } \prod_{n=1}^{\infty}\left|1+\frac{i}{n}\right| .
$$

Solution:

$$
\prod_{n=1}^{\infty}\left(1+\frac{i}{n}\right) \text { diverges and } \prod_{n=1}^{\infty}\left|1+\frac{i}{n}\right| \text { converges. }
$$

Proof: We first examine:

$$
\prod_{n=1}^{\infty}\left|1+\frac{i}{n}\right|=\prod_{n=1}^{\infty} \sqrt{1+\frac{1}{n^{2}}}
$$

Let:

$$
p_{N}=\prod_{n=1}^{N} \sqrt{1+\frac{1}{n^{2}}}
$$

Then:

$$
\begin{equation*}
\ln \left(p_{N}\right)=\frac{1}{2} \sum_{n=1}^{N} \ln \left(1+\frac{1}{n^{2}}\right) \tag{1}
\end{equation*}
$$

We now use the following inequality which holds for all $x \geq 0$:

$$
0 \leq \ln (1+x) \leq x
$$

(To prove this let $x \geq 0$ and $g(x)=x-\ln (1+x)$. Then $g(0)=0$ and $g^{\prime}(x)=1-\frac{1}{1+x}=\frac{x}{1+x} \geq 0$ from which it follows that $g(x) \geq 0$.) Using this inequality above gives:

$$
0 \leq \ln \left(p_{N}\right) \leq \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n^{2}}=\text { this is a } p \text { series with } p=2>1 \text { and so } \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges. }
$$

Thus we see from (1) that $\ln \left(p_{N}\right)$ is increasing and bounded above and thus $\lim _{N \rightarrow \infty} \ln \left(p_{N}\right)$ exists which implies $\lim _{N \rightarrow \infty} p_{N}$ exists. Thus:

$$
\prod_{n=1}^{\infty}\left|1+\frac{i}{n}\right| \text { converges. }
$$

For the next part it helps to rewrite $1+\frac{i}{n}$ in polar form. In fact:

$$
1+\frac{i}{n}=\sqrt{1+\frac{1}{n^{2}}} e^{i \tan ^{-1}\left(\frac{1}{n}\right)}
$$

Then by rules of exponentials:

$$
\prod_{n=1}^{N}\left(1+\frac{i}{n}\right)=\prod_{n=1}^{N} \sqrt{1+\frac{1}{n^{2}}} e^{i \sum_{n=1}^{N} \tan ^{-1}\left(\frac{1}{n}\right)}
$$

Now the product on the right converges by the first part of this problem so we just need to determine:

$$
\text { whether or not } \sum_{n=1}^{N} \tan ^{-1}\left(\frac{1}{n}\right) \text { converges. }
$$

We now use the following inequality which holds for all $0 \leq x \leq 1$:

$$
\tan ^{-1}(x) \geq \frac{1}{2} x
$$

To see this let $h(x)=\tan ^{-1}(x)-\frac{1}{2} x$. Then notice that $h(0)=0$ and $h^{\prime}(x)=\frac{1}{1+x^{2}}-\frac{1}{2} \geq 0$ for $0 \leq x \leq 1$ and thus $h(x) \geq 0$ for $0 \leq x \leq 1$.
It follows from this that:

$$
\sum_{n=1}^{N} \tan ^{-1}\left(\frac{1}{n}\right) \geq \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n} \text { and as is well-known } \sum_{n=1}^{N} \frac{1}{n} \rightarrow \infty \text { as } N \rightarrow \infty
$$

Therefore we see:

$$
\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{1}{n}\right) \text { diverges }
$$

and therefore:

$$
\prod_{n=1}^{\infty}\left(1+\frac{i}{n}\right) \text { diverges. }
$$

