SOLUTION FOR APRIL 2023

Correct solutions were turned in by:

Ria Garg
Victor Lin (Winner)
Tyson Ramirez (Runner-Up)

Let n be a positive integer. Prove that:

$$
(\sqrt{2}-1)^{n}=\sqrt{m}-\sqrt{m-1} \text { for some positive integer } m .
$$

Solution: If n is even then $m=b_{2 n}^{2}$ and if n is odd then $m=2 a_{2 n+1}^{2}$ where a_{n}, b_{n} are defined below.

Proof: Observe that:

$$
\begin{equation*}
(\sqrt{2}-1)^{n}=(-1)^{n+1}\left(a_{n} \sqrt{2}-b_{n}\right) \tag{1}
\end{equation*}
$$

where a_{n} and b_{n} are integers and that $a_{1}=1, b_{1}=1$. Further:

$$
\begin{aligned}
(\sqrt{2}-1)^{n+1} & =(\sqrt{2}-1)^{n}(\sqrt{2}-1) \\
=(-1)^{n+1}\left(a_{n} \sqrt{2}-b_{n}\right)(\sqrt{2}-1) & =(-1)^{n+2}\left(\sqrt{2}\left(a_{n}+b_{n}\right)-\left(2 a_{n}+b_{n}\right)\right)
\end{aligned}
$$

and thus:

$$
\begin{gathered}
a_{n+1}=a_{n}+b_{n} \\
b_{n+1}=2 a_{n}+b_{n}
\end{gathered}
$$

It follows from this that $0<a_{n}<a_{n+1}$ and $0<b_{n}<b_{n+1}$ and it also follows from this that a_{n} and b_{n} are integers. In addition, a straightforward computation shows:

$$
2 a_{n+1}^{2}-b_{n+1}^{2}=(-1)\left(2 a_{n}^{2}-b_{n}\right)
$$

and thus it follows by induction that:

$$
\begin{equation*}
2 a_{n}^{2}-b_{n}^{2}=(-1)^{n+1} \tag{2}
\end{equation*}
$$

Case 1: n even

Then we see using (1):

$$
(\sqrt{2}-1)^{2 n}=b_{2 n}-a_{2 n} \sqrt{2}=\sqrt{b_{2 n}^{2}}-a_{2 n} \sqrt{2}
$$

So we will finish this case if we can show

$$
a_{2 n} \sqrt{2}=\sqrt{b_{2 n}^{2}-1}
$$

but this follows from (2). This completes Case 1 with $m=b_{2 n}^{2}$.
Case 2: n odd

Then we see using (1):

$$
(\sqrt{2}-1)^{2 n+1}=a_{2 n+1} \sqrt{2}-b_{2 n+1}=\sqrt{2 a_{2 n+1}^{2}}-b_{2 n+1}
$$

So we will finish this case if we can show

$$
b_{2 n+1}=\sqrt{2 a_{2 n+1}^{2}-1}
$$

but this again follows from (2). This completes Case 2 with $m=2 a_{2 n+1}^{2}$.

