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DIFFERENTIAL OPERATORS FOR HERMITIAN JACOBI FORMS
AND HERMITIAN MODULAR FORMS

JAMES D. MARTIN AND JAYANTHA SENADHEERA

Abstract. Kim [14] constructs multilinear differential operators for Hermitian Jacobi forms and
Hermitian modular forms. However, her work relies on incorrect actions of differential operators
on spaces of Hermitian Jacobi forms and Hermitian modular forms. In particular, her results are
incorrect if the underlying field is the Gaussian number field. We consider more general spaces
of Hermitian Jacobi forms and Hermitian modular forms over Q(i), which allow us to correct the
corresponding results in [14].

1. Introduction

Differential operators are important tools in the theory of automorphic forms. Rankin-Cohen
brackets are certain bilinear differential operators [ , ]ν on the space of holomorphic functions on
the upper half-plane, indexed by a non-negative integer ν, which take modular forms to modular
forms. If f and g are modular forms of weights k and ` respectively, then

[f, g]ν :=
∑
r,s≥0
r+s=ν

(−1)r
(
k + ν − 1

s

)(
`+ ν − 1

r

)
drf

dτ r
dsg

dτ s
.

Moreover, while [f, g]0 is simply the product of the two functions, [f, g]1 satisfies the Jacobi
identity, endowing the space of modular forms with a Lie algebra structure. Zagier [18] investigates
Rankin-Cohen brackets and their algebraic structure in great detail. For an overview and some of
their remarkable applications in different areas of mathematics see, for example [19].

Rankin-Cohen brackets have been constructed for various types of automorphic forms (see for
example, [2, 4, 5, 6, 7, 8, 11] among many others). Kim [14] gives a construction of multilinear
differential operators (and in particular, Rankin-Cohen brackets) for Hermitian Jacobi forms and
Hermitian modular forms of degree 2 over complex quadratic fields K. Unfortunately, her results
rely on an incorrect action of a heat operator on Hermitian Jacobi forms and also on an incomplete
set of generators for the Hermitian modular group of degree 2, which invalidates her results.

The purpose of this paper is to correct [14] in the case that the underlying field is K = Q(i).
Recently, Richter and the second author [16] introduce a new space of Hermitian Jacobi forms over
Q(i), and they also give the action of the heat operator on this new space. We apply the results
in [16] to establish multilinear differential operators (and in particular, Rankin-Cohen brackets) for
Hermitian Jacobi forms and Hermitian modular forms correcting the results in [14]. Furthermore,
we discuss an explicit example of a Rankin-Cohen bracket of two Hermitian modular forms of
degree 2. Throughout this paper we assume that k is an even positive integer.
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2. Differential operators for Hermitian Jacobi forms

In this section we proceed as in [14] to construct differential operators on Hermitian Jacobi
forms. We start by briefly recalling the definition of Hermitian Jacobi forms over the Gaussian
number field Q(i) in [16] and the action of the heat operator on such forms. More on Hermitian
Jacobi forms may be found in [9]. Throughout, m is a nonnegative integer, δ ∈ {±1}, and H
denotes the usual complex upper half plane. Let O := Z(i) be the ring of Gaussian integers
with inverse different O# := 1

2Z[i], and let Γ(O) := {εM | ε ∈ {±1,±i},M ∈ SL2(Z)} be the
Hermitian modular group. For more details on the Hermitian modular group, see for example
Chapter 2 of [15].

Definition 2.1. A holomorphic function φ(τ, z, w) : H× C2 → C is a Hermitian Jacobi form of
weight k, index m, and parity δ, with ε as above, if it satisfies the transformation laws

• φ
(
aτ+b
cτ+d ,

εz
cτ+d ,

ε−1w
cτ+d

)
= σ(ε)εk

(
cτ + d)ke

2πimczw
cτ+d φ(τ, z, w),

for every ε
(
a b
c d

)
∈ Γ(O) where σ(ε) :=

{
1 if δ = +1 (positive parity)
ε2 if δ = −1 (negative parity) .

• φ
(
τ, z + λτ + µ,w + λτ + µ

)
= e−2πim

(
λλτ+λz+λw

)
φ(τ, z, w) for all λ, µ ∈ O.

• Furthermore, φ must have a Fourier expansion of the form

φ(τ, z, w) =

∞∑
n=0

∑
r∈O#

4mn−|r|2≥0

c(n, r)e2πi(nτ+rz+rw).

We denote the space of Hermitian Jacobi forms of weight k, index m, and parity δ by Jδk,m(O).
To avoid confusion with other meanings of superscripts, when the parity is known we write J+

k,m

and J−k,m for positive and negative parity, respectively.

Define the heat operator

Lm :=
1

(2πi)2

(
8πim

∂

∂τ
− 4

∂2

∂w∂z

)
.(2.1)

If φ ∈ Jδk,m(O), then a straightforward computation shows that (for details, see also Lemma 5.1
of [17])

Lm(φ) =
(k − 1)m

3
E2φ+ φ̂,(2.2)

where φ̂ ∈ J−δk+2,m(O) and where E2 is the usual quasimodular Eisenstein series.
The constructions of multilinear differential operators on Hermitian Jacobi forms in [14] are

based on §3 of [12] (see also [5, 7]). In particular, the method in Theorem 3.2 of [14] is valid, and
the following theorem deviates only in the action of the heat operator Lm and it’s corresponding
effect on parity. For brevity we only state key steps and the final results without including the
detailed calculations.

Theorem 2.2. For fixed k, m, and δ, define a formal power series

f̃(τ, z, w;X) =
∞∑
ν=0

χν(τ, z, w)Xν
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such that f̃ satisfies the functional equation

(2.3) f̃
(aτ + b

cτ + d
,

εz

cτ + d
,
ε−1w

cτ + d
;

X

(cτ + d)2

)
= σ(ε)εk

(
cτ + d)ke

2πimczw
cτ+d e

2πimcX
cτ+d f̃(τ, z, w;X)

for all ε
(
a b
c d

)
∈ Γ(O).

Furthermore, assume that the Taylor coefficients χν of f̃ are holomorphic in H×C2 and satisfy

χν
(
τ, z + λτ + µ,w + λτ + µ

)
= e−2πim

(
λλτ+λz+λw

)
χν(τ, z, w)

for all λ, µ ∈ O, and have Fourier expansions of the form

χν(τ, z, w) =
∞∑
n=0

∑
r∈O#

nm−|r|2≥0

cν(n, r)e2πi(nτ+rz+rw).

Then

ξν :=
ν∑
`=0

(−1)`L`m(χν−`)(k + 2ν − `− 3)!

`!(k + 2ν − 3)!
∈ J (−1)νδ

k+2ν,m(O).

Proof. The proof is completely analogous to the proof of Theorem 3.2 of [14], and we give only
a short sketch. Let J̃δk,m be the space of formal power series defined above, and let L̃k,m :=

Lm − (k − 1) ∂
∂X −X

∂2

∂X2 . Then

L̃k,m

(
σ(ε)εk(cτ + d)−ke

−2πimczw
cτ+d e

−2πimcX
cτ+d f̃

(
Mτ,

εz

cτ + d
,
ε−1w

cτ + d
;

X

(cτ + d)2

))
= σ(ε)εk(cτ + d)−k−2e

−2πimczw
cτ+d e

−2πimcX
cτ+d L̃k,m

(
f̃
)(

Mτ,
εz

cτ + d
,
ε−1w

cτ + d
;

X

(cτ + d)2

)
.

One finds that

J̃δk,m
L̃k,m→ J̃−δk+2,m

L̃k+2,m→ J̃δk+4,m
···→ J̃

(−1)νδ
k+2ν,m and composing with the map (τ, z, w,X) 7→

(τ, z, w, 0) yields the claim. �

Note that the Taylor coefficients χν in Theorem 2.2 can be expressed in terms of the Jacobi
forms ξν :

χν(τ, z, w) =
ν∑
`=0

(k + 2ν − 2`− 2)!L`m(ξν−`)

`!(k + 2ν − `− 2)!
.

In particular, setting ξ0 := f for a Hermitian Jacobi form f and ξν := 0 for ν ≥ 1 yields the
following result.

Theorem 2.3. Let f ∈ Jδk,m(O). Then

f̃(τ, z, w;X) :=

∞∑
ν=0

Lνm(f(τ, z, w))

ν!(k + ν − 2)!
Xν

satisfies (2.3).

One can apply Theorem 2.3 to define the following multilinear differential operator on Hermitian
Jacobi forms, which relies on the action of the heat operator in (2.2).
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Theorem 2.4. Fix ` ∈ N. Let fi ∈ Jδiki,mi(O) for 1 ≤ i ≤ `. For any nonnegative integer ν and
any Y = (y1, . . . , y`−1) ∈ C`−1 define

(2.4) [f1, f2, . . . , f`]Y,2ν :=

∑
∑̀
q=1

rq+p=ν

(−1)p(k + 2ν − p− 3)!

p!(k + 2ν − 3)!
Lpm

(∏̀
j=1

(
1−

j−1∑
i=1

miyi +
∑̀

i=j+1
miyj

)rj
rj !(kj + rj − 2)!

L
rj
mj (fj)

)

where k :=
∑̀
i=1

ki, m :=
∑̀
i=1

mi, and δ :=
∏̀
i=1

δi. Then

[f1, f2, . . . , f`]Y,2ν ∈ J
(−1)νδ
k+2ν,m(O).

Proof. This proof is completely analagous to Theorem 3.4 of [14], and we again only sketch the
proof. Use Theorem 2.3 to define a formal power series in X by

FY (τ, z, w;X) :=
∏̀
q=1

f̃q

(
τ, z, w;

(
1−

q−1∑
i=1

miyi +
∑̀
i=q+1

miyq

)
X

)
=
∞∑
ν=0

χν(τ, z, w)Xν .

Then FY satisfies the functional equation (2.3) with k =
∑̀
i=1

ki, m =
∑̀
i=1

mi, and δ =
∏̀
i=1

δi. The

result follows by applying Theorem 2.2 to FY . �

Remark 2.5. If ` = 2 and Y = (0) in Theorem 2.4, then (2.4) reduces to the Rankin-Cohen
bracket for Hermitian Jacobi forms. That is, for f ∈ Jδk,m(O) and g ∈ Jγ`,n(O),

[f, g]2ν := [f, g]Y,2ν =
∑

r+s+p=ν

(−1)p(k + `+ 2ν − p− 3)!

p!(k + `+ 2ν − 3)!
Lpm+n

(
Lrm(f)

r!(k + r − 2)

Lsn(g)

s!(`+ s− 2)

)
.

Then [f, g]2ν ∈ J (−1)νδγ
k+`+2ν,m+n(O).

3. Differential operators for Hermitian modular forms

Kim §4 [14] constructs a multilinear differential operator on the space of Hermitian modular
forms of degree two and weights that are divisible by 4. In this section we follow Kim’s construc-
tion using Theorem 2.2 and a complete set of generators for Γ2(O). Moreover, we consider also
Hermitian modular forms with determinant characters, which allows us to construct a multilin-
ear differential operator on the space of Hermitian modular forms of degree 2 and arbitrary even
weights.

We begin by introducing necessary notation. The Hermitian half-space of degree 2 is given by

H2 := {Z ∈M2×2(C)
∣∣ 1
2i(Z − Z

t
) > 0},

and the Hermitian modular group of degree 2 is defined by

Γ2(O) :=
{
M ∈M4×4(O)

∣∣∣MJM
t

= J
}
,

where J :=
(

0 −I2
I2 0

)
. As usual, if Z =

(
τ ′ z
w τ

)
∈ H2 and M =

(
A B
C D

)
∈ Γ2(O), then

M〈Z〉 := (AZ +B)(CZ +D)−1.
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Definition 3.1. Let χ be an abelian character of Γ2(O). A holomorphic function F : H2 → C is
a Hermitian modular form of weight k, degree 2, and character χ if

F (M〈Z〉) = χ(M) det(CZ +D)kF (Z)(3.1)

for all M = ( ∗ ∗C D ) ∈ Γ2(O).
We denote the space of Hermitian modular forms of weight k, degree 2, and character χ by

Mk(Γ2(O), χ).

Consider a Hermitian modular form F ∈ Mk(Γ2(O), χ). Then writing Z =
(
τ ′ z
w τ

)
∈ H2 yields

the so-called Fourier-Jacobi expansion

F (Z) =
∞∑
m=0

fm(τ, z, w)e2πimτ
′
,

where fm ∈ Jδk,m(O), and δ is determined by the relation

f∗m(Z) := fm(τ, z, w)e2πimτ
′

= χ(M) det(CZ +D)−kf∗m(M〈Z〉)
for all M = ( ∗ ∗C D ) ∈ Γ2(O).

For our purposes, it is more convenient to use the following set of generators, rather than the
more standard generators in Krieg [15]. Recall from Aoki [1] that Γ2(O) is generated by the
following matrices:

R :=

{(
1 0 a b+ic
0 1 b−ic d
0 0 1 0
0 0 0 1

) ∣∣∣∣ a, b, c, d ∈ Z
}
,

S :=

{(
1 a+ib 0 0
0 1 0 0
0 0 1 0
0 0 −a+ib 1

) ∣∣∣∣ a, b ∈ Z
}
,

T :=

{(
1 0 0 0
0 a 0 b
0 0 1 0
0 c 0 d

) ∣∣∣∣ ( a bc d ) ∈ SL2(Z)

}
,

X :=

(−i 0 0 0
0 1 0 0
0 0 −i 0
0 0 0 1

)
,

Y :=

(
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

)
.

(3.2)

In particular, if M = X = ( ∗ ∗C D ), then det(CZ + D)k = ik, and one finds that Hermitian
modular forms with trivial character χ = 1 correspond to Hermitian Jacobi forms of positive
parity and if k ≡ 2 (mod 4), then Hermitian modular forms with a determinant character (i.e.,
χ(M) = det−

k/2 in (3.1)) correspond to Hermitian Jacobi forms of negative parity. This relation
follows from the fact by Braun [3] that when M ∈ Γ2(O), detM = ε2 for some unit ε, which is
compatible with Definition 2.1.

We now give the multilinear differential operator for Hermitian modular forms.

Theorem 3.2. Let Fi ∈ Mki(Γ2(O), χi), where χi = 1 or χi = det−
ki/2 (1 ≤ i ≤ `). For a

nonnegative integer ν, define

(3.3) [F1, . . . , F`]ν :=
∑

∑̀
q=1

rq+p=ν

(−1)p(k + 2ν − p− 3)!

p!(k + 2ν − 3)!
Dp

(∏̀
i=1

1

ri!(ki + ri − 2)!
Dri(Fi)

)
,

where D := 1
π2

(
∂2

∂τ∂τ ′ −
∂2

∂z∂w

)
and k :=

∑̀
i=1

ki.
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Then [F1, . . . , F`]ν ∈Mk+2ν(Γ2(O), (χ1 · · ·χ`) det−ν).

Proof. The Fourier-Jacobi expansions Fj(Z) =
∑

m≥0 f
(j)
m (τ, z, w)e2πimτ

′ yield the Fourier-Jacobi
expansion of [F1, . . . , F`]ν :

[F1, . . . , F`]ν =
∑
j1≥0
· · ·
∑
j`≥0

[f
(1)
j1
, . . . , f

(`)
j`

]0,2ν(τ, z, w)e2πi(j1+···+j`)τ
′
.

Consider the generators in (3.2). If M =
(
A B
C D

)
where M ∈ R, S,T, or M = Y , then Theo-

rem 2.4 implies that

[F1, . . . , F`]ν(M〈Z〉) = det(CZ +D)k+2ν [F1, . . . , F`]ν(Z).

Finally, if M = X, then Theorem 2.4 implies that

[F1, . . . , F`]ν(X〈Z〉) =
(∏̀
i=1

χi(X)
)

det(X)ν det(CZ +D)k+2ν [F1, . . . , F`]ν(Z).

The claim follows. �

Remark 3.3. If ` = 2 in Theorem 3.2, then (3.3) reduces to the Rankin-Cohen bracket for
Hermitian modular forms. That is, for F ∈Mk(Γ2(O), χ) and G ∈M`(Γ2(O), ψ),

[F,G]ν =
∑

r+s+p=ν

(−1)p(k + `+ 2ν − p− 3)!

p!(k + `+ 2ν − 3)!
Dp

(
Dr(F )

r!(k + r − 2)!

Ds(G)

s!(`+ s− 2)!

)
.

Then [F,G]ν ∈Mk+`+2ν(Γ2(O), χ · ψ · det(M)ν).

We conclude with a concrete example of the first Rankin-Cohen bracket of two Hermitian
modular forms.

Example 3.4. Recall from §2 of [10] the Hermitian Eisenstein series Ek ∈ Mk(Γ2(O), det−
k
2 ).

Theorem 3.2 asserts that [E4, E6]1 ∈ M12(Γ2(O), det−6) = M12(Γ2(O), 1). Moreover, [E4, E6]1 is
a so-called symmetric Hermitian modular form, as defined in §2 of [10].

Graded rings of Hermitian modular forms were determined in [10]. In particular, Theorem 10b)
of [10] says that if k ≡ 0 (mod 4), then any symmetric f ∈ Mk(Γ2(O), 1) is a polynomial in E4,
E2

6 , E6E10, E2
10, E12, and φ24 ∈ M8(Γ2(O), 1) where φ4 is given in Corollary 4 of [10]. A direct

computation (using the formula for Fourier coefficients of Hermitian Eisenstein series in [13])
reveals that

[E4, E6]1 =
1

144
D(E4)E6 +

1

240
E4D(E6)−

1

432
D(E4E6)

= 16E12 −
16 · 441

691
E3

4 −
16 · 250

691
E2

6 +
56

15
E4φ

2
4.

Finally, inspecting coefficients shows that f12 := E12− 441
691E

3
4 − 250

691E
2
6 from Corollary 2 of [10]and

E4φ
2
4 are linearly independent cusp forms of weight 12 with trivial character, and one can also

write the above bracket as
[E4, E6]1 = 16f12 +

56

15
E4φ

2
4.
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