SOLUTION FOR DECEMBER 2023

Let n be a positive integer and let $x>0$. Define:

$$
f(x)=\sum_{k=1}^{2 n} \frac{x^{\frac{2 k}{2 n+1}}}{x^{\frac{2 k}{2 n+1}}+x} .
$$

Determine $f(2023)$.

Solution:

$$
f(x)=\sum_{k=1}^{2 n} \frac{x^{\frac{2 k}{2 n+1}}}{x^{\frac{2 k}{2 n+1}}+x}=n \text { for all } x>0
$$

and so in particular $f(2023)=n$.
Proof: Let us look at the sum of the $k=1$ term and the $k=2 n$ term. Then we obtain:

$$
\frac{x^{\frac{2}{2 n+1}}}{x^{\frac{2}{2 n+1}}+x}+\frac{x^{\frac{4 n}{2 n+1}}}{x^{\frac{4 n}{2 n+1}}+x} .
$$

Notice that if we divide the numerator and denominator of the first term by $x^{\frac{2}{n+1}}$ we obtain:

$$
\frac{x^{\frac{2}{2 n+1}}}{x^{\frac{2}{2 n+1}}+x}=\frac{1}{1+x^{\frac{2 n-1}{2 n+1}}} .
$$

Next notice that if we divide the numerator and denominator of the second term by x we obtain:

$$
\frac{x^{\frac{4 n}{2 n+1}}}{x^{\frac{4 n}{2 n+1}}+x}=\frac{x^{\frac{2 n-1}{2 n+1}}}{1+x^{\frac{2 n-1}{2 n+1}}} .
$$

Adding these last two equations we obtain:

$$
\frac{x^{\frac{2}{2 n+1}}}{x^{\frac{2}{2 n+1}}+x}+\frac{x^{\frac{4 n}{2 n+1}}}{x^{\frac{4 n}{2 n+1}}+x}=1 .
$$

Using a similar argument we see that the sum of the $k=2$ term and the $k=2 n-1$ is also 1 as is the sum of the $k=3$ and $k=2 n-2$ terms, etc., and finally the sum of the $k=n$ term and the $k=n+1$ term is 1 . Thus the entire sum 1 added n times and hence we obtain:

$$
\sum_{k=1}^{2 n} \frac{x^{\frac{2 k}{2 n+1}}}{x^{\frac{2 k}{2 n+1}}+x}=n \text { for all } x>0
$$

