SOLUTION FOR DECEMBER 2023

Let n be a positive integer and let x > 0. Define:

_2k

2n
Z 2 2n+1

1 2 1.’-1'

Determine f(2023).
Solution:
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and so in particular f(2023) = n.

Proof: Let us look at the sum of the £ = 1 term and the k& = 2n term. Then we obtain:
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Notice that if we divide the numerator and denominator of the first term by 27T we obtain:
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Next notice that if we divide the numerator and denominator of the second term by = we obtain:
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Adding these last two equations we obtain:
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Using a similar argument we see that the sum of the k = 2 term and the k£ = 2n — 1 is also 1
as is the sum of the £ = 3 and & = 2n — 2 terms, etc., and finally the sum of the k = n term
and the k =n + 1 term is 1. Thus the entire sum 1 added n times and hence we obtain:
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Z z =n for all z > 0.
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