SOLUTION FOR FEBRUARY 2024

Correct answers were submitted by:

Matthew Li
Victor Lin (Runner Up)
Rishabh Mallidi (Winner)

February Problem:

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function that satisfies:

$$
\begin{equation*}
f(f(x))=-x \text { for every } x \in \mathbb{R} \tag{1}
\end{equation*}
$$

Prove that f is one-to-one and onto. In addition, prove that any such function f cannot be continuous!

Solution: We first show f is one-to-one. So suppose $f(x)=f(y)$. Applying f again and (1) gives:

$$
-x=f(f(x))=f(f(y))=-y
$$

and thus $x=y$. Therefore f is one-to-one.
Next we show f is onto. So let $y_{0} \in \mathbb{R}$. Now let $x_{0}=f\left(-y_{0}\right)$. Then using (1) we see $f\left(x_{0}\right)=f\left(f\left(-y_{0}\right)\right)=y_{0}$ and thus f is onto.

Finally we suppose f is continuous and try to obtain a contradiction.
Using (1) we see $f(f(0))=0$ and so let us denote $f(0)=a$. Then we see $f(a)=f(f(0))=0$. Without loss of generality let us suppose $a \geq 0$. We now claim that $f(0)=a=0$ for suppose $a>0$ then we see that since f is continuous then $g(x)=f(x)-x$ is continuous. Also $g(0)=f(0)-0=a-0>0$ and $g(a)=f(a)-a=0-a<0$. Then by the Intermediate Value Theorem there is a b with $0<b<a$ such that $g(b)=0$, that is, $f(b)=b$. Applying f and using (1) gives $-b=f(f(b))=f(b)$. Therefore $-b=f(b)=b$ and thus $b=0$ and therefore $f(0)=0$ - a contradiction. Therefore we see that $f(0)=0$.

Next since f is continuous and one-to-one we must have either $f(x)>0$ for $x>0$ or $f(x)<0$ for $x>0$. (To see this suppose there are positive $c_{1}<c_{2}$ with $f\left(c_{1}\right)>0$ and $f\left(c_{2}\right)<0$. Then by the Intermediate Value Theorem there is a c_{3} with $c_{1}<c_{3}<c_{2}$ such that $f\left(c_{3}\right)=0$ but since f is one-to-one and $f(0)=0$ then this forces $c_{3}=0$ which contradicts that $\left.c_{3}>0\right)$. So without loss of generality let us assume $f(x)>0$ for $x>0$. Now let us denote $f(1)=c>0$. Then by (1) we see $-1=f(f(1))=f(c)$. But this contradicts that $f(x)>0$ for $x>0$. Therefore we see that any such function must be discontinuous.

Note: In fact it can be shown that f must have an infinite number of discontinuities!

