SOLUTION FOR JANUARY 2024

Winner: Orion Jordan
Runner Up: Victor Lin

Determine:

$$
\lim _{n \rightarrow \infty}(n!e-[n!e])
$$

Note: $[x]$ is the largest integer $\leq x$ so for example $[1.2]=1,[\pi]=3,[-1.2]=-2)$.

Solution:

$$
\lim _{n \rightarrow \infty}(n!e-[n!e])=0
$$

Proof: It follows from the Maclaurin series for $f(x)=e^{x}$ at $x=1$ that:

$$
e=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\frac{1}{(n+1)!}+\cdots
$$

Thus:
$n!e=\left(n!+n!+\frac{n!}{2!}+\frac{n!}{3!}+\cdots+\frac{n!}{(n-1)!}+1\right)+\left(\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right)$.
Notice that the terms in the first set of parentheses are all integers. (For example $\frac{n!}{3!}=$ $\frac{n!}{3!(n-3)!}(n-3)!=\binom{n}{3}(n-3)!$ where $\binom{n}{3}$ is the binomial coefficient which is an integer).

Next we claim that the second term in parentheses is a number that is greater than or equal to 0 and strictly less than 1 and therefore the above reads:

$$
n!e=[n!e]+\left(\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right)
$$

Thus:

$$
n!e-[n!e]=\left(\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right)
$$

To finish the proof we will now show that:

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right)=0
$$

Notice that:

$$
0 \leq\left(\frac{1}{n+1}+\frac{1}{(n+1)(n+2)}+\frac{1}{(n+1)(n+2)(n+3)}+\cdots\right) \leq\left(\frac{1}{n+1}+\frac{1}{(n+1)^{2}}+\frac{1}{(n+1)^{3}}+\cdots\right)
$$

The series on the right is geometric and it is known for a geometric series with initial term a and common ratio r with $|r|<1$ that:

$$
a+a r+a r^{2}+a r^{3}+\cdots=\frac{a}{1-r}
$$

For the series we are considering we have $a=\frac{1}{n+1}$ and $r=\frac{1}{n+1}<1$ and so its sum is:

$$
\frac{\frac{1}{n+1}}{1-\frac{1}{n+1}}=\frac{1}{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Therefore:

$$
\lim _{n \rightarrow \infty}(n!e-[n!e])=0
$$

