SOLUTION FOR MARCH 2023

Correct solutions were submitted by:

Victor Lin - Runner-Up
Eric Peng - Winner

Prove:

$$
\begin{equation*}
e^{\left(e^{x}-1\right)}=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n} \tag{1}
\end{equation*}
$$

where $b_{0}=1$ and

$$
\begin{equation*}
b_{n+1}=\sum_{k=0}^{n}\binom{n}{k} b_{k} \tag{2}
\end{equation*}
$$

Also prove:

$$
\begin{equation*}
b_{n}=\frac{1}{e} \sum_{n=0}^{\infty} \frac{k^{n}}{k!} \tag{3}
\end{equation*}
$$

Remark: Notice that (3) says that the quantity $\frac{1}{e} \sum_{n=0}^{\infty} \frac{k^{n}}{k!}$ is an integer! (This is not obvious not to me at least!)

Proof: Let $g(x)=e^{\left(e^{x}-1\right)}$. Next observe $g(0)=1$ and:

$$
\begin{gathered}
g^{\prime}(x)=e^{x} g(x) \\
g^{\prime \prime}(x)=\left(g^{\prime}(x)+g(x)\right) e^{x} \\
g^{\prime \prime \prime}(x)=\left(g^{\prime \prime}(x)+2 g^{\prime}(x)+g(x)\right) e^{x} \\
g^{\prime \prime \prime \prime}(x)=\left(g^{\prime \prime \prime}(x)+3 g^{\prime \prime}(x)+3 g^{\prime}(x)+g(x)\right) e^{x}
\end{gathered}
$$

Notice that the numbers we obtain as coefficients are exactly the numbers that one obtains in Pascal's triangle. In fact one can show by induction that:

$$
\begin{equation*}
g^{(n+1)}(x)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(x) \tag{4}
\end{equation*}
$$

Now let us write:

$$
g(x)=\sum_{n=0}^{\infty} \frac{b_{n}}{n!} x^{n}
$$

and notice that:

$$
\begin{equation*}
b_{n}=g^{(n)}(0) \tag{5}
\end{equation*}
$$

Then using (4)-(5) we see:

$$
b_{n+1}=g^{(n+1)}(0)=\sum_{k=0}^{n}\binom{n}{k} g^{(k)}(0)=\sum_{k=0}^{n}\binom{n}{k} b_{k} .
$$

This proves (2).
Next we recall:

$$
e^{y}=\sum_{k=0}^{\infty} \frac{y^{k}}{k!}
$$

Thus:

$$
e^{\left(e^{x}\right)}=\sum_{k=0}^{\infty} \frac{e^{k x}}{k!}=\sum_{k=0}^{\infty} \frac{\sum_{n=0}^{\infty} \frac{(k x)^{n}}{n!}}{k!}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty} \frac{k^{n}}{k!}\right) \frac{x^{n}}{n!}
$$

We note here that interchanging the order of summation in the above is allowed because the series $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$ converges absolutely for all values of x. Thus:

$$
e^{\left(e^{x}-1\right)}=e^{\left(e^{x}\right)} e^{-1}=\sum_{n=0}^{\infty}\left(\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!}\right) \frac{x^{n}}{n!}
$$

Comparing this with (1) we see this proves (3).

