SOLUTION FOR MAY 2024

Determine which of the following numbers is a perfect square $1,14,144,1444,14444, \cdots$.
Solution The only numbers which are perfect squares are $1=1^{2}, 144=12^{2}, 1444=38^{2}$.
Proof: We know that 14 is not a perfect square and that 144 and 1444 are perfect squares so now let us consider 14444. A similar proof works for the other numbers.

Now suppose there is an n such that $n^{2}=14444$. Then n^{2} is even and so therefore $n=2 k$ for some k and therefore $4 k^{2}=14444$ and thus $k^{2}=3611$.
Now k^{2} is odd so therefore k must be odd and so $k=2 m+1$. Thus $4 m^{2}+4 m+1=k^{2}=3611$ and thus $4\left(m^{2}+m\right)=3610$ therefore $2\left(m^{2}+m\right)=1805$ but the left-hand side is even and the right-hand side is odd. Thus we obtain a contradiction.

