SOLUTION FOR NOVEMBER 2023

Correct solutions were submitted by:

Orion Jordan (Runner-Up)
Victor Lin (Winner)

Prove for any positive integer N that:

$$
\sum_{k=1}^{n} \frac{k(k+1)(k+2) \cdots(k+N-1)}{N!}=\frac{n(n+1)(n+2) \cdots(n+N)}{(N+1)!}
$$

Solution: We prove this by induction on n. When $n=1$ there is only one term in the sum on the left-hand side and we see this is:

$$
\frac{1 \cdot 2 \cdots N}{N!}=\frac{N!}{N!}=1
$$

and the right-hand side is:

$$
\frac{1 \cdot 2 \cdots(N+1)}{(N+1)!}=\frac{(N+1)!}{(N+1)!}=1
$$

Thus we see the equation holds for $n=1$.
We now assume:

$$
\sum_{k=1}^{n} \frac{k(k+1)(k+2) \cdots(k+N-1)}{N!}=\frac{n(n+1)(n+2) \cdots(n+N)}{(N+1)!}
$$

and try to prove:

$$
\sum_{k=1}^{n+1} \frac{k(k+1)(k+2) \cdots(k+N-1)}{N!}=\frac{(n+1)(n+2) \cdots(n+N)(n+1+N)}{(N+1)!}
$$

So we begin with the left-hand side and divide it into two terms and use our inductive hypothesis to get:

$$
\begin{gathered}
\sum_{k=1}^{n+1} \frac{k(k+1)(k+2) \cdots(k+N-1)}{N!}=\sum_{k=1}^{n} \frac{k(k+1)(k+2) \cdots(k+N-1)}{N!}+\frac{(n+1)(n+2)(n+3) \cdots(n+N)}{N!} \\
=\frac{n(n+1)(n+2) \cdots(n+N)}{(N+1)!}+\frac{(n+1)(n+2)(n+3) \cdots(n+N)}{N!} \\
=\frac{n(n+1)(n+2) \cdots(n+N)}{(N+1)!}+\frac{(n+1)(n+2)(n+3) \cdots(n+N)(N+1)}{(N+1)!} \\
=\frac{(n+1)(n+2) \cdots(n+N)(n+N+1)}{(N+1)!} .
\end{gathered}
$$

