SOLUTION FOR OCTOBER 2023

Determine:

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \, dx.$$

Solution:

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \, dx = \frac{\pi^3}{8}.$$

Proof: First we observe that if we make the substitution $u = \frac{1}{x}$, $du = -\frac{1}{x^2} dx$ (so that $-u^2 du = dx$), and recall that $\ln(\frac{1}{u}) = -\ln(u)$ then we see that:

$$\int_{1}^{\infty} \frac{(\ln x)^2}{1+x^2} \, dx = \int_{1}^{0} \frac{(\ln \frac{1}{u})^2}{1+\frac{1}{u^2}} (-u^2) \, du = \int_{0}^{1} \frac{(\ln u)^2}{1+u^2} \, du = \int_{0}^{1} \frac{(\ln x)^2}{1+x^2} \, dx.$$

Therefore we see that:

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \, dx = \int_0^1 \frac{(\ln x)^2}{1+x^2} \, dx + \int_1^\infty \frac{(\ln x)^2}{1+x^2} \, dx = 2 \int_0^1 \frac{(\ln x)^2}{1+x^2} \, dx$$

Next for -1 < x < 1 we have:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n.$$

Replacing x by $-x^2$ gives for -1 < x < 1:

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}.$$

Thus we see:

$$\frac{(\ln x)^2}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} (\ln x)^2.$$

Next we integrate by parts and obtain:

$$\int_0^1 x^{2n} \ln^2 x \, dx = \frac{x^{2n+1}}{2n+1} \ln^2 x \Big|_0^1 - \int_0^1 \frac{2x^{2n+1}}{2n+1} (\ln x) (\frac{1}{x}) \, dx = 0 - \frac{2}{2n+1} \int_0^1 x^{2n} \ln x \, dx.$$

We integrate by parts again and get:

$$-\frac{2}{2n+1}\int_0^1 x^{2n}\ln x\,dx = -\frac{2}{(2n+1)^2}x^{2n+1}\ln x\Big|_0^1 + \frac{2}{(2n+1)^2}\int_0^1 x^{2n} = 0 + \frac{2}{(2n+1)^3}$$

Therefore we see that:

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \, dx = 2 \int_0^1 \frac{(\ln x)^2}{1+x^2} \, dx = 4 \sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^3}.$$

Next it is a well-known fact that $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}$ and so we finally see that:

$$\int_0^\infty \frac{(\ln x)^2}{1+x^2} \, dx = \frac{\pi^3}{8}.$$

Note: It is known that:

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^{2k+1}} = \frac{(-1)^k E_{2k}}{2^{2k+2}(2k)!} \pi^{2k+1}$$

where the E_{2k} are the *Eulerian numbers*. These numbers are integers and they come up in the Maclaurin series of sec(x).