SOLUTION FOR OCTOBER 2023

Determine:

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

Solution:

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8}
$$

Proof: First we observe that if we make the substitution $u=\frac{1}{x}, d u=-\frac{1}{x^{2}} d x$ (so that $\left.-u^{2} d u=d x\right)$, and recall that $\ln \left(\frac{1}{u}\right)=-\ln (u)$ then we see that:

$$
\int_{1}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x=\int_{1}^{0} \frac{\left(\ln \frac{1}{u}\right)^{2}}{1+\frac{1}{u^{2}}}\left(-u^{2}\right) d u=\int_{0}^{1} \frac{(\ln u)^{2}}{1+u^{2}} d u=\int_{0}^{1} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

Therefore we see that:

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x=\int_{0}^{1} \frac{(\ln x)^{2}}{1+x^{2}} d x+\int_{1}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x=2 \int_{0}^{1} \frac{(\ln x)^{2}}{1+x^{2}} d x
$$

Next for $-1<x<1$ we have:

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

Replacing x by $-x^{2}$ gives for $-1<x<1$:

$$
\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}
$$

Thus we see:

$$
\frac{(\ln x)^{2}}{1+x^{2}}=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}(\ln x)^{2}
$$

Next we integrate by parts and obtain:

$$
\int_{0}^{1} x^{2 n} \ln ^{2} x d x=\left.\frac{x^{2 n+1}}{2 n+1} \ln ^{2} x\right|_{0} ^{1}-\int_{0}^{1} \frac{2 x^{2 n+1}}{2 n+1}(\ln x)\left(\frac{1}{x}\right) d x=0-\frac{2}{2 n+1} \int_{0}^{1} x^{2 n} \ln x d x
$$

We integrate by parts again and get:

$$
-\frac{2}{2 n+1} \int_{0}^{1} x^{2 n} \ln x d x=-\left.\frac{2}{(2 n+1)^{2}} x^{2 n+1} \ln x\right|_{0} ^{1}+\frac{2}{(2 n+1)^{2}} \int_{0}^{1} x^{2 n}=0+\frac{2}{(2 n+1)^{3}}
$$

Therefore we see that:

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x=2 \int_{0}^{1} \frac{(\ln x)^{2}}{1+x^{2}} d x=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}
$$

Next it is a well-known fact that $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{3}}=\frac{\pi^{3}}{32}$ and so we finally see that:

$$
\int_{0}^{\infty} \frac{(\ln x)^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8}
$$

Note: It is known that:

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{2 k+1}}=\frac{(-1)^{k} E_{2 k}}{2^{2 k+2}(2 k)!} \pi^{2 k+1}
$$

where the $E_{2 k}$ are the Eulerian numbers. These numbers are integers and they come up in the Maclaurin series of $\sec (x)$.

