University of North Texas Logic and Dynamics Seminar Presents Julia Romanowska **University of Warsaw**

Friday, February 6 at 2:00 p.m. in GAB 461

Employment:

PhD student at the University of Warsaw

Education:

PhD studies in Mathematics (currently) MSc in Mathematics (2013) MSc in Computer Science (2011) BSc in Mathematics (2010)

Current Research:

Weierstrass function, fractal geometry and complex networks

Interests and Activities:

Hiking, scuba diving, and music

Homepage:

http://www.mimuw.edu.pl/~romanoju/

Julia Romanowska

A post-lecture reception with cookies, coffee, and tea will be held at 3:30 p.m. in the General Academic Building, Room 472.

Department of Mathematics University of North Texas 1155 Union Circle # 311430 Denton, TX 76203

940-565-2155

ww.math.unt.edu

Classical Weierstrass Function

In my talk I will examine dimension of the graph of the famous Weierstrass non-differentiable function

W
$$\lambda, b(x) = \sum_{n=0}^{\infty} \lambda n \cos(2\pi b^n x)$$

for an integer $b \ge 2$ and $1/b < \lambda < 1$. In our recent paper, together with Balázs Bárány and Krysztof Barański, we prove that for every b there exists (explicitly given) $\lambda_b \in (1/b, 1)$ such that the Hausdorff dimension of the graph of $W_{\lambda,b}$ is equal to $D = 2 + \frac{\log \lambda}{\log b}$ for every $\lambda \in (\lambda b, 1)$. We also show that the dimension is equal to D for almost every λ on some larger interval. This partially solves a well-known thirty-year-old conjecture.

