SOLUTION FOR SEPTEMBER 2023

Let $0<a<b$. Determine:

$$
\sum_{n=1}^{\infty} \frac{e^{-n a}-e^{-n b}}{n}
$$

Solution:

$$
\ln \left(\frac{1-e^{-b}}{1-e^{-a}}\right)
$$

Proof: We first consider

$$
\sum_{n=1}^{N} e^{-n x} \text { for } x>0
$$

and notice that the right-hand side is a finite geometric series with sum:

$$
\sum_{n=1}^{N} e^{-n x}=\frac{e^{-x}\left(1-e^{-N x}\right)}{1-e^{-x}} \text { for } x>0
$$

Integrating on $[a, b]$ gives:

$$
\begin{gather*}
\sum_{n=1}^{N} \frac{e^{-n a}-e^{-n b}}{n}=\int_{a}^{b} \frac{e^{-x}}{1-e^{-x}} d x-\int_{a}^{b} \frac{e^{-(N+1) x}}{1-e^{-x}} d x \tag{1}\\
=\ln \left(\frac{1-e^{-b}}{1-e^{-a}}\right)-\int_{a}^{b} \frac{e^{-(N+1) x}}{1-e^{-x}} d x \tag{2}
\end{gather*}
$$

Now since for $x>0$ we have $0<\sum_{n=1}^{\infty} \frac{e^{-n x}}{n} \leq \sum_{n=1}^{\infty} e^{-n x}=\frac{e^{-x}}{1-e^{-x}}$ it follows then that the left-hand side of (1) converges as $N \rightarrow \infty$ and thus from (1)-(2) we obtain:

$$
\sum_{n=1}^{\infty} \frac{e^{-n a}-e^{-n b}}{n}=\ln \left(\frac{1-e^{-b}}{1-e^{-a}}\right)-\lim _{N \rightarrow \infty} \int_{a}^{b} \frac{e^{-(N+1) x}}{1-e^{-x}} d x
$$

Finally we have:
$0 \leq \int_{a}^{b} \frac{e^{-(N+1) x}}{1-e^{-x}} d x \leq e^{-N a} \int_{a}^{b} \frac{e^{-x}}{1-e^{-x}} d x=e^{-N a} \ln \left(\frac{1-e^{-b}}{1-e^{-a}}\right) \rightarrow 0$ as $N \rightarrow \infty$ since $a>0$.
Thus we obtain:

$$
\sum_{n=1}^{\infty} \frac{e^{-n a}-e^{-n b}}{n}=\ln \left(\frac{1-e^{-b}}{1-e^{-a}}\right)
$$

