On the local dimension of the set of univoque bases

Fix a positive integer M. The univoque set \mathscr{U} of bases $q \in(1, M+1)$ in which the number 1 has a unique expansion over the alphabet $\{0,1, \ldots, M\}$ plays a central role in the theory of non-integer base expansions. It has Lebesgue measure zero but Hausdorff dimension one. However, the dimension of $\mathscr{U} \cap I$ varies greatly with the choice of the subinterval I. One way to capture this variation is through the function

$$
f(q):=\lim _{\delta \rightarrow 0} \operatorname{dim}_{H}(\mathscr{U} \cap(q-\delta, q+\delta)), \quad q \in(1, M+1)
$$

In this talk I will give a precise characterization of the function $f(q)$ and its one-sided analogs, and show how at least for certain values of q they can be explicitly calculated. A consequence of the main result is that f is continuous at those (and only those) points where it vanishes. Using the function f we can express the Hausdorff dimension of $\mathscr{U} \cap I$ for any subinterval I. Finally, the main result is applied to solve an open problem about strongly univoque sets.

This is joint work with Derong Kong.

