PROBLEM OF THE MONTH
PROBLEM FOR OCTOBER 2015

Let \(T \) be an equilateral triangle. Let \(P \) be an arbitrary point in \(T \). Let \(d_1, d_2, \) and \(d_3 \) be the distances of \(P \) to each of the three sides of \(T \). Show that \(d_1 + d_2 + d_3 \) is independent of \(P \)!
That is, show that \(d_1 + d_2 + d_3 \) is the same regardless of which point \(P \) is chosen.

Solution:

\[
d_1 + d_2 + d_3 = \frac{\sqrt{3}}{2} s
\]

where \(s \) is the length of a side of the triangle.

There were several correct solutions turned in this month. Nice going everyone! A few of them gave an argument similar to the following.

Let \(P \) be an arbitrary point in the equilateral triangle \(XYZ \) where \(s \) is the length of a side of the triangle. Then it is known that the area of triangle \(XYZ \) is \(\frac{\sqrt{3}}{4} s^2 \). Next we drop a perpendicular of length \(d_1 \) from \(P \) to say side \(YZ \). Calculating the area of \(PYZ \) we see we get \(\frac{1}{2} s d_1 \). Similarly we drop a perpendicular of length \(d_2 \) from \(P \) to \(XY \). Calculating the area of \(PXY \) we obtain \(\frac{1}{2} s d_2 \). Finally we do the same with \(d_3 \) and triangle \(PXZ \). Its area is \(\frac{1}{2} s d_3 \). Adding the areas of the three small triangles we see that this is equal to the area of \(XYZ \) which is \(\frac{\sqrt{3}}{4} s^2 \). Thus we obtain: \(\frac{\sqrt{3}}{4} s^2 = \frac{1}{2} s (d_1 + d_2 + d_3) \). After rewriting we obtain:

\[
d_1 + d_2 + d_3 = \frac{\sqrt{3}}{2} s.
\]