SOLUTION FOR MARCH 2020

Correct solutions were submitted by:

Let $m<n<p$ be positive integers and suppose N is an integer such that:

$$
\begin{equation*}
\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=N \tag{1}
\end{equation*}
$$

Prove that there is only one solution and find the solution.

SOLUTION:

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1
$$

is the only solution.
Proof: Since $m<n<p$ then $m \geq 1, n \geq 2$, and $p \geq 3$ thus $N=\frac{1}{m}+\frac{1}{n}+\frac{1}{p} \leq 1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}<2$. Since N must be an integer then we see $N=1$. This then implies $m>1$ so $m \geq 2$.

We next claim that $m=2$. So suppose not. Then $m \geq 3, n \geq 4, m \geq 5$ so that $1=\frac{1}{m}+\frac{1}{n}+\frac{1}{p} \leq$ $\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}$ which is impossible. Thus $m=2$ and so (1) becomes:

$$
\frac{1}{n}+\frac{1}{p}=\frac{1}{2}
$$

Since $p>n>m=2$ then we see $n \geq 3$.

We next claim that $n=3$. So suppose not. Then $n \geq 4$ and $p \geq 5$ so $\frac{1}{2}=\frac{1}{n}+\frac{1}{p} \leq \frac{1}{4}+\frac{1}{5}=\frac{9}{20}$ which is impossible. Therefore $n=3$ from which it follows that $p=6$.

