SOLUTION FOR APRIL 2022

A correct solution was submitted by:

Atharv Chagi

Let T be a right triangle with sides a, b, and hypotenuse c. Draw the incircle with radius r. Denote the vertices as L, Q, R with vertex Q at the right angle. Let S be the intersection where the incircle meets the hypotenuse. Show that:

$$
L S=\frac{1}{2}(c+a-b)
$$

HINT: It is known that if A is the area and P the perimeter then $A=\frac{1}{2} r P$.
SOLUTION: Using $A=\frac{1}{2} r P$ gives $\frac{1}{2} a b=A=\frac{1}{2} r P=\frac{1}{2} r(a+b+c)$. Thus $a b=r(a+b+c)$. At the right angle we have a square with side r. Let X be the center of the incircle. And denote the square with side r as $Q U X V$ where U is on $L Q$ and V is on $Q R$. Then $L U X$ is congruent to $L S X$ and also $R V X$ is congruent to $R S X$. This then implies $a-r+b-r=c$ so:

$$
\begin{equation*}
a+b-c=2 r \tag{1}
\end{equation*}
$$

Next we have $L S=a-r$ and so using (1) gives $2 L S=2 a-2 r=2 a-(a+b-c)=c+a-b$ and thus:

$$
L S=\frac{1}{2}(c+a-b) .
$$

